Tampilkan postingan dengan label Fisika. Tampilkan semua postingan
Tampilkan postingan dengan label Fisika. Tampilkan semua postingan

Jumat, 16 Agustus 2013

Global Warming

BAB I
PENDAHULUAN
A.     Latar Belakang Maksalah
      Kebutuhan hidup yang terus meningkat menuntut penggalian potensi-potensi ekonomi. Namun, ketika eksploitasi itu tidak lagi mengindahkan pelestarian lingkungan maka itulah awal bencana. Tuntutan industrilasasi yang dihadapi hampir semua Negara ternyata membawa implikasi yang demikian besar terhadap paradigma pembangunan.
Dalam konteks pembangunan yang berkelanjutan harus memperhatikan aspek kelestarian lingkungan dan kelanggengan sumber daya sehingga kekayaan yang sebagian besar tidak diperbaruhi, dan ini bisa dimanfaatkan semaksimal mungkin bukan hanya untuk saat ini tetapi juga generasi yang akan datang, dalam hal ini lingkungan hidup semakin menjadi isu penting yang tidak perlu kita ketahui sehingga tidak menggangu kelestarian lingkungan.
       Salah satu isu penting yang mulai dirasakan yaitu mengenai pemanasan global yang merupakan fenomena naiknya suhu bumi sehingga dikwatirkan akan mengancam kesehatan manusia. Meningkatnya panas bumi dalam dekade terakhir ini berkembang sebagai isu politik dunia. Dalam tahun 2000 yang lalu tidak ada satu Negara pun yang terbebas dari situasi pemanasan global, pemanasan global ini dan rusaknya lapisan ozon ini pada stratosfer bumi disebabkan terakumulasinya gas-gas rumah kaca dalam jumlah yang berlebihan, seperti dipergunakan bahan bakar fosil.

B. Global Warming
Pemanasan Global (Global Warming) adalah isu global yang semakin sering didengungkan oleh berbagai pihak belakangan ini. Tetapi sayangnya porsi pemberitaan kedua topik yang sangat mendesak ini di media massa masih sangat minim. Untuk itulah himbauan kecil ini dibuat: untuk memberikan pengetahuan kepada pembacanya mengenai pemanasan global warming, bahayanya, serta solusi untuk mengeremnya. Mengeremnya? Ya, mengerem pemanasan global tidaklah mustahil apabila masing-masing dari kita mau berubah. Perubahan pola pikir dan pola hidup dapat mengerem pemanasan global hingga titik terendah yang bahkan mungkin Anda pikir mustahil untuk dilakukan.

  1. Pengertian Global warming                                    
Pemanasan global / Global warming  adalah suatu kejadian meningkatnya temperatur rata-rata atmosfer, laut dan daratan Bumi. Pemanasan Global akan diikuti dengan Perubahan Iklim, seperti meningkatnya curah hujan di beberapa belahan dunia sehingga menimbulkan banjir dan erosi. Sedangkan, di belahan bumi lain akan mengalami musim kering yang berkepanjangan disebabkan kenaikan suhu.
 Meningkatnya temperatur global diperkirakan juga akan menyebabkan perubahan-perubahan yang lain seperti naiknya muka air laut, meningk, serta perubahan jumlah dan pola presipitasi. Akibat-akibat pemanasan global yang lain adalah terpengaruhnya hasil pertanian, hilangnya gletser dan punahnya berbagai jenis hewan. Sebagian besar pemerintahan negara-negara di dunia telah menandatangani dan meratifikasi Protokol Kyoto, yang mengarah pada pengurangan emisi gas-gas rumah kaca. Untuk Lebih jelas perhatikan gambar berikut :
 
2. Penyebab Global Warming
a. Efek rumah kaca
Segala sumber energi yang terdapat di Bumi berasal dari Matahari. Sebagian besar energi tersebut dalam bentuk radiasi gelombang pendek, termasuk cahaya tampak. Ketika energi ini mengenai permukaan Bumi, ia berubah dari cahaya menjadi panas yang menghangatkan Bumi. Permukaan Bumi, akan menyerap sebagian panas dan memantulkan kembali sisanya. Sebagian dari panas ini sebagai radiasi infra merah gelombang panjang ke angkasa luar. Namun sebagian panas tetap terperangkap di atmosfer bumi akibat menumpuknya jumlah gas rumah kaca antara lain uap air, karbondioksida, dan metana yang menjadi perangkap gelombang radiasi ini, gas-gas inilah yang bergesekan/beraksi dengan lapisan ozon rusak. Padahal lapisan ozon inilah yang berfungsi menyerap sinar ultra violet yang berlebihan, sehingga dapat mencegah makhluk hidup di bumi terkena kanker kulit dan mencegah rusaknya tanaman dan biota di perairan.
Uap air (H2O) sebenarnya merupakan gas rumah kaca terkuat (memberikan sumbangan 36 – 70 % efek rumah kaca). Akan tetapi siklus harian air mencegah akumulasi berlebihan uap air di atmosfir. Efek uap air hanya dirasakan sebagai perubahan suhu harian atau sesuai dengan perubahan cuaca. Gas CO2 (memberi sumbangan 9 – 26 %) menimbulkan efek rumah kaca tidak sekuat uap air tetapi jauh lebih kuat daripada CH4 (memberikan sumbangan 4 – 9%). Gas rumah kaca lain adalah ozon (O3) yang memberikan sumbangan sebesar 3 – 7 %. Baik gas CO2 maupun CH4 dapat berada di atmosfir untuk waktu yang lama, sehingga CO2 merupakan gas utama yang bertanggung jawab atas pemanasan bumi.
Peningkatan gas rumah kaca terutama CO2 dimulai secara signifikan setelah kebangkitan ideologi kapitalis di Eropa dengan industrialisasinya. Gambar dibawah ini menunjukkan korelasi dan menggambarkan peningkatan yang lebih tajam pada tahun-tahun berikutnya ketika industri mulai berkembang.  Sehingga tidak salah bila kapitalisme dinobatkan sebagai ideologi dan peradaban yang bertanggung jawab atas global warming. Disamping itu, negara-negara industri kapitalis merupakan negara yang paling bertanggung jawab dalam emisi berlebih CO2. Amerika Serikat penghasil CO2 terbesar, yaitu 25% dunia. Wyongming, negara bagian AS dengan penduduk yang tidak banyak, hanya 495.7000 orang, menghasilkan CO2 lebih banyak dibandingkan dengan tujuh puluh empat negara berkembang dengan jumlah populasi gabungan hampir sebaganyak 369 juta jiwa. Emisi CO2 yang dihasilkan Texas, dengan populasi 22 juta jiwa, setara dengan emisi gas yang dihasilkan oleh 120 negara berkembang dengan jumlah penduduk lebih dari 1,1 miliar manusia. Secara kuantitatif AS menghembuskan hampir 6500 Mega Ton CO2-equivalen yang 95% dari sektor energi, sementara Indonesia (minus kebakaran hutan) dengan jumlah penduduk yang hampir sama dengan AS menghembuskan hanya sekitar 400 Mega Ton CO2-equivalen. Bila ditotal
maka negara kapitalis yang tergabung dalam G-8 (AS, Jepang, Jerman, Kanada, Inggris, Perancis, Italia dan Rusia) membuang CO2  sebanyak 68% dunia. Ini artinya negara industri kapitalis, dengan ideologi kapitalisnya, mengakibatkan bencana kehidupan berupa global warming.
Gas-gas ini menyerap dan memantulkan kembali radiasi gelombang yang dipancarkan Bumi dan akibatnya panas tersebut akan tersimpan di permukaan Bumi. Hal tersebut terjadi berulang-ulang dan mengakibatkan suhu rata-rata tahunan bumi terus meningkat. Gas-gas tersebut berfungsi sebagaimana kaca dalam rumah kaca. Dengan semakin meningkatnya konsentrasi gas-gas ini di atmosfer, semakin banyak panas yang terperangkap di bawahnya. Sebenarnya, efek rumah kaca ini sangat dibutuhkan oleh segala makhluk hidup yang ada di bumi, karena tanpanya, planet ini akan menjadi sangat dingin. Sehingga es akan menutupi seluruh permukaan Bumi. Akan tetapi, akibat jumlah gas-gas tersebut telah berlebih di atmosfer, pemanasan global menjadi akibatnya. Salah satu buktinya perhatikan gambar dibawah ini.
Gambar bagian kiri : rata-rata suhu tahunan dari tahun 1880 s.d. 1990, 
Gambar bagian kanan  kandungan CO2 di udara kota Hawai (dalam ppm)

b. Efek umpan balik
 Efek-efek dari agen penyebab pemanasan global juga dipengaruhi oleh berbagai proses umpan balik yang dihasilkannya. Sebagai contoh adalah pada penguapan air. Pada kasus pemanasan akibat bertambahnya gas-gas rumah kaca seperti CO2, pemanasan pada awalnya akan menyebabkan lebih banyaknya air yang menguap ke atmosfer. Karena uap air sendiri merupakan gas rumah kaca, pemanasan akan terus berlanjut dan menambah jumlah uap air di udara hingga tercapainya suatu kesetimbangan konsentrasi uap air. Efek rumah kaca yang dihasilkannya lebih besar bila dibandingkan oleh akibat gas CO2 sendiri. (Walaupun umpan balik ini meningkatkan kandungan air absolut di udara,kelembaban relatif udara hampir konstan atau bahkan agak menurun karena udara menjadi menghangat). Umpan balik ini hanya dapat dibalikkan secara perlahan-lahan karena CO2 memiliki usia yang panjang di atmosfer.
           Efek-efek umpan balik karena pengaruh awan sedang menjadi objek penelitian saat ini. Bila dilihat dari bawah, awan akan memantulkan radiasi infra merah balik ke permukaan, sehingga akan meningkatkan efek pemanasan. Sebaliknya bila dilihat dari atas, awan tersebut akan memantulkan sinar Matahari dan radiasi infra merah ke angkasa, sehingga meningkatkan efek pendinginan. Apakah efek netto-nya pemanasan atau pendinginan tergantung pada beberapa detail-detail tertentu seperti tipe dan ketinggian awan tersebut. Detail-detail ini sulit direpresentasikan dalam model iklim, antara lain karena awan sangat kecil bila dibandingkan dengan jarak antara batas-batas komputasional dalam model iklim (sekitar 125 hingga 500 km untuk model yang digunakan dalam Laporan Pandangan IPCC ke Empat
          Umpan balik penting lainnya adalah hilangnya kemampuan memantulkan cahaya (albedo) oleh es.Ketika temperatur global meningkat, es yang berada di dekat kutub mencair dengan kecepatan yang terus meningkat. Bersama dengan melelehnya es tersebut, daratan atau air dibawahnya akan terbuka. Baik daratan maupun air memiliki kemampuan memantulkan cahaya lebih sedikit bila dibandingkan dengan es, dan akibatnya akan menyerap lebih banyak radiasi Matahari. Hal ini akan menambah pemanasan dan menimbulkan lebih banyak lagi es yang mencair, menjadi suatu siklus yang berkelanjutan.
          Umpan balik positif akibat terlepasnya CO2 dan CH4 dari melunaknya tanah beku (permafrost) adalah mekanisme lainnya yang berkontribusi terhadap pemanasan. Selain itu, es yang meleleh juga akan melepas CH4 yang juga menimbulkan umpan balik positif. Kemampuan lautan untuk menyerap karbon juga akan berkurang bila ia menghangat, hal ini diakibatkan oleh menurunya tingkat nutrien pada zona mesopelagic sehingga membatasi pertumbuhan diatom daripada fitoplankton yang merupakan penyerap karbon yang rendah.
             c. Variasi  Matahari
Terdapat hipotesa yang menyatakan bahwa variasi dari Matahari, dengan kemungkinan diperkuat oleh umpan balik dari awan, dapat memberi kontribusi dalam pemanasan saat ini. Perbedaan antara mekanisme ini dengan pemanasan akibat efek rumah kaca adalah meningkatnya aktivitas Matahari akan memanaskan stratosfer sebaliknya efek rumah kaca akan mendinginkan stratosfer. Pendinginan stratosfer bagian bawah paling tidak telah diamati sejak tahun 1960, yang tidak akan terjadi bila aktivitas Matahari menjadi kontributor utama pemanasan saat ini. (Penipisan lapisan ozon juga dapat memberikan efek pendinginan tersebut tetapi penipisan tersebut terjadi mulai akhir tahun 1970-an.) Fenomena variasi Matahari dikombinasikan dengan aktivitas gunung berapi mungkin telah memberikan efek pemanasan dari masa pra-industri hingga tahun 1950, serta efek pendinginan sejak tahun 1950.
3. Dampak Global Warming
            a. Mencairnya es di kutub utara & selatan
Antartika di Kutub Selatan adalah daratan benua dengan wilayah pegunungan dan danau berselimut es yang dikelilingi lautan. Benua ini jauh lebih dingin daripada Artik, sehingga lapisan es di sana sangat jarang meleleh, bahkan ada lapisan yang tidak pernah mencair dalam sejarah. Temperatur rata-ratanya minus 49 derajat Celsius, tapi pernah mencapai hampir minus 90 derajat celsius pada Juli 1983. Tak heran jika fenomena mencairnya es di benua yang mengandung hampir 90 persen es di seluruh dunia itu mendapat perhatian serius peneliti.
b.Cuaca
Para ilmuan memperkirakan bahwa selama pemanasan global, daerah bagian Utara dari belahan Bumi Utara (Northern Hemisphere) akan memanas lebih dari daerah-daerah lain di Bumi. Akibatnya, gunung-gunung es akan mencair dan daratan akan mengecil. Akan lebih sedikit es yang terapung di perairan Utara tersebut. Daerah-daerah yang sebelumnya mengalami salju ringan, mungkin tidak akan mengalaminya lagi. Pada pegunungan di daerah subtropis, bagian yang ditutupi salju akan semakin sedikit serta akan lebih cepat mencair. Musim tanam akan lebih panjang di beberapa area. Temperatur pada musim dingin dan malam hari akan cenderung untuk meningkat. Daerah hangat akan menjadi lebih lembab karena lebih banyak air yang menguap dari lautan. Para ilmuan belum begitu yakin apakah kelembaban tersebut malah akan meningkatkan atau menurunkan pemanasan yang lebih jauh lagi.
        Hal ini disebabkan karena uap air merupakan gas rumah kaca, sehingga keberadaannya akan meningkatkan efek insulasi pada atmosfer. Akan tetapi, uap air yang lebih banyak juga akan membentuk awan yang lebih banyak, sehingga akan memantulkan cahaya matahari kembali ke angkasa luar, di mana hal ini akan menurunkan proses pemanasan (lihat siklus air). Kelembaban yang tinggi akan meningkatkan curah hujan, secara rata-rata, sekitar 1 persen untuk setiap derajat Fahrenheit pemanasan. (Curah hujan di seluruh dunia telah meningkat sebesar 1 persen dalam seratus tahun terakhir ini). Badai akan menjadi lebih sering. Selain itu, air akan lebih cepat menguap dari tanah. Akibatnya beberapa daerah akan menjadi lebih kering dari sebelumnya. Angin akan bertiup lebih kencang dan mungkin dengan pola yang berbeda. Topan badai (hurricane) yang memperoleh kekuatannya dari penguapan air, akan menjadi lebih besar. Berlawanan dengan pemanasan yang terjadi, beberapa periode yang sangat dingin mungkin akan terjadi. Pola cuaca menjadi tidak terprediksi dan lebih ekstrim.
c. Tinggi muka laut
Perubahan tinggi rata-rata muka laut diukur dari daerah dengan lingkungan yang stabil secara geologi. Ketika atmosfer menghangat, lapisan permukaan lautan juga akan menghangat, sehingga volumenya akan membesar dan menaikkan tinggi permukaan laut. Pemanasan juga akan mencairkan banyak es di kutub, terutama sekitar Greenland, yang lebih memperbanyak volume air di laut. Tinggi muka laut di seluruh dunia telah meningkat 10 - 25 cm (4 - 10 inchi) selama abad ke-20, dan para ilmuan IPCC memprediksi peningkatan lebih lanjut 9 - 88 cm (4 - 35 inchi) pada abad ke-21. 
              Perubahan tinggi muka laut akan sangat mempengaruhi kehidupan di daerah pantai. Kenaikan 100 cm (40 inchi) akan menenggelamkan 6 persen daerah Belanda, 17,5 persen daerah Bangladesh, dan banyak pulau-pulau. Erosi dari tebing, pantai, dan bukit pasir akan meningkat. Ketika tinggi lautan mencapai muara sungai, banjir akibat air pasang akan meningkat di daratan. Negara-negara kaya akan menghabiskan dana yang sangat besar untuk melindungi daerah pantainya, sedangkan negara-negara miskin mungkin hanya dapat melakukan evakuasi dari daerah pantai.Bahkan sedikit kenaikan tinggi muka laut akan sangat mempengaruhi ekosistem pantai. Kenaikan 50 cm (20 inchi) akan menenggelamkan separuh dari rawa-rawa pantai di Amerika Serikat. Rawa-rawa baru juga akan terbentuk, tetapi tidak di area perkotaan dan daerah yang sudah dibangun. Kenaikan muka laut ini akan menutupi sebagian besar dari Florida Everglades.
d. Pertanian
Orang mungkin beranggapan bahwa Bumi yang hangat akan menghasilkan lebih banyak makanan dari sebelumnya, tetapi hal ini sebenarnya tidak sama di beberapa tempat. Bagian Selatan Kanada, sebagai contoh, mungkin akan mendapat keuntungan dari lebih tingginya curah hujan dan lebih lamanya masa tanam. Di lain pihak, lahan pertanian tropis semi kering di beberapa bagian Afrika mungkin tidak dapat tumbuh. Daerah pertanian gurun yang menggunakan air irigasi dari gunung-gunung yang jauh dapat menderita jika snowpack (kumpulan salju) musim dingin, yang berfungsi sebagai reservoir alami, akan mencair sebelum puncak bulan-bulan masa tanam. Tanaman pangan dan hutan dapat mengalami serangan serangga dan penyakit yang lebih hebat.
e. Hewan dan tumbuhan
Hewan dan tumbuhan menjadi makhluk hidup yang sulit menghindar dari efek pemanasan ini karena sebagian besar lahan telah dikuasai manusia. Dalam pemanasan global, hewan cenderung untuk bermigrasi ke arah kutub atau ke atas pegunungan. Tumbuhan akan mengubah arah pertumbuhannya, mencari daerah baru karena habitat lamanya menjadi terlalu hangat. Akan tetapi, pembangunan manusia akan menghalangi perpindahan ini. Spesies-spesies yang bermigrasi ke utara atau selatan yang terhalangi oleh kota-kota atau lahan-lahan pertanian mungkin akan mati. Beberapa tipe spesies yang tidak mampu secara cepat berpindah menuju kutub mungkin juga akan musnah.
f. Kesehatan manusia
          Di dunia yang hangat, para ilmuan memprediksi bahwa lebih banyak orang yang terkena penyakit atau meninggal karena stress panas. Wabah penyakit yang biasa ditemukan di daerah tropis, seperti penyakit yang diakibatkan nyamuk dan hewan pembawa penyakit lainnya, akan semakin meluas karena mereka dapat berpindah ke daerah yang sebelumnya terlalu dingin bagi mereka. Saat ini, 45 persen penduduk dunia tinggal di daerah di mana mereka dapat tergigit oleh nyamuk pembawa parasit malaria; persentase itu akan meningkat menjadi 60 persen jika temperature meningkat. Penyakit-penyakit tropis lainnya juga dapat menyebar seperti malaria, seperti demam dengue, demam kuning, dan encephalitis. Para ilmuan juga memprediksi meningkatnya insiden alergi dan penyakit pernafasan karena udara yang lebih hangat akan memperbanyak polutan, spora mold dan serbuk sari. Jadi pemanasan global (Global Warming) memberi dampak pada berbagai aspek kehidupan manusia, termasuk pada bidang kesehatan. 
Hasil studi yang dilakukan ilmuwan di Pusat Pengembangan Kawasan Pesisir dan Laut, Institut Teknologi Bandung (2007), pun tak kalah mengerikan. Ternyata, permukaan air laut Teluk Jakarta meningkat setinggi 0,8 cm. Jika suhu bumi terus meningkat, maka diperkirakan, pada tahun 2050 daera-daerah di Jakarta (seperti : Kosambi, Penjaringan, dan Cilincing) dan Bekasi (seperti : Muaragembong, Babelan, dan Tarumajaya) akan terendam semuanya.
         Yah,kita semua sudah mengetahui itu dan sebagian orang tetap mencoba untuk memberitahukan bahwa kejadian ini benar-benar sedang terjadi. Namun tetap tidak sedikit orang yang masih tidak peduli. Mungkin karena kita masih merasa nyaman dengan keadaan sekarang, bisa menikamti semuanya mulai dari makanan, air, udara, daratan yang sukup untuk bermain bola, social yang masih cukup damai, dan lain - lain.
Yah,itu saat ini lalu bagaimana jika 10 tahun lagi, atau 20 tahun, atau sampai 30 tahun lagi. Kita tahu tidak akan terjadi perubahan yang signifikan saat ini karena kita semua masih menganggap ini hal yang biasa, tapi saya akan menjadi manusia yang sangat bodoh jika saya tidak terus mencoba untuk menginformasikan ini. Untuk itu pada penulisan kali ini saya akan mencoba ”Mengimformasikan Solusi Pengendalian Global Warming terhadap bumi”

C.  Rumusan Masalah
Berdasarkan latar belakang masalah diatas dapat dirumuskan masalahkali ini adalah : ” Apakah Peneraan solusi pengendalaian Global Warming, berpengaruh terhadap bumi “?

D.     Tujuan Penulisan
Berdasarkan rumusan masalah dan batasan masalah di atas maka tujuan dari penlisan makalah ini adalah untuk mengetahui Pengaruh Penerapan solusi pengendalain Global Warming,  terhadap bumi.

E.  Manfaat Penulisan
 Adapun manfaat penulisan makalah ini bagi kita semua secara umum dan bagi penulis secara khusus adalah :
    1. Dapat menimbulkan kesadaran akan pentingnya menjaga bumi dari kerusakan
    2. Memenuhi tugas mata kuliah Materi dan Energi

BAB II TINJAUAN KEPUSTAKAAN        
A. Bumi
Bumi adalah planet yang ketiga letaknya dari matahari.
Yang dimaksud dengan planet adalah benda – benda langit yang beredar mengelilingi matahari. Bumi juga diartikan sebagai tanah tempat kita berpijak.
1. Pandangan Geosentris dan Heliosentris
 Pandangan atau Hipotesis Geosentris dikemukakan oleh Ptolomeus tahun 70-174 sebelum masehi yang memandang bumi sebagai pusat alam semesta dengan menjelaskan gerak bulan, planet dan matahari ini dengan menempatkan lingkaran-lingkaran kecil pada gerak planet, matahari dan bulan pada lapisan yang berorientasi mengelilingi bumi. Pandangan ini dibantah oleh Covernicus 1473-1543 yang mengemukakan suatu sistem atau Hipotesis Heliosentris dengan menempatkan matahari sebagai pusat tata surya. Covernicus memandang gerak planet-planet ini berbentuk lingkaran mengintari matahari termasuk juga bumi. Susunan planet-planet dalam sistem tata surya, dimulai dari planet yang terdekat dengan matahari yaitu Merkurius, Venus, Bumi, Mars, Yupiter, Sarturnus, Uranus, dan Pluto.
2. Bumi sebagai planet
  Bumi mengorbit matahari dalam lintasan berbentuk elips ( Hukum Keppler I ) pada jarak rata-rata 149,6 juta kilometer atau 93 juta mil. Karena lintasannya berbentuk elips maka jarak matahari dan bumi selalu berubah-ubah. Perubahan jarak matahari bumi dalam satu tahun adalah sekitar 3 juta mil.
B. Bagian-Bagian Bumi
1 Inti Bumi (Barisfer atau Centrosfer)
            Inti bumi terdiri dari bagian yaitu : Mantel (tebalnya 1800 mil), Inti Luar (tebalnya 1360 mil), dan Inti Dalam (tebalnya 815 mil). Berat jenis inti bumi diperkirakan 10, 7 sedangkan berat jenis Litosfer rata-rata 2, 8. Sehingga dapat disimpulkan bahwa ini bumi lebih berat dari kulit bumi. Pengaruh panas matahari hanya terasa paling dalam 20 m dibawah permukaan bumi. Setelah 20 m ke bawah temperaturnya telah konstan (tidak lagi dipengaruhi musim panas dan musim dingin). Akan tetapi, makin masuk ke dalam bumi temperaturnya makin tinggi. Ada beberapa alasan tentang kenapa Barisfer atau Inti Bumi dikatakan padat. Yang pertama, bila seandainya barisfer itu cair, maka tentu akan terjadi pasang naik dan pasang surut, yang mungkin akan mengakibatkan permukaan bumi kembang kempis. Yang kedua getaran-getaran gemba di Jepang dapat diukur di Inggris dengan alat-alat yang alus. Sifat tersebut menunjukan bahwa inti bumi padat. Inti bumi menyebabkan adanya sifat kemagnetan. Bumi merupakan magnet raksasa dengan kutub utara magnet terletak dibagian selatan bumi dan kutub selatan magnet terletak dibagian utara bumi meskipun ternyata tidak tepat betul pada kutub bumi, yang menyimpang 17 derajat dilihat dari pusat bumi.   
2 Kulit Bumi (Litosfer)
Kulit bumi adalah bagian bumi yang fital bagi kehidupan manusia berupa benua, daratan, pulau-pulau tempat tinggal dan tempat melangsungkan kehidupan manusia. Lapisan litosfer terdiri dari dua lapisan yaitu lapisan sial (silisium dan aluminium) dengan berat jenis rata-rata 2, 65, dan lapisan sima (sisilium dan magnesium) dengan berat jenis rata-rata 2, 9. Kulit bumi terdiri dari zat padat yang disebut batuan.
Menurut kejadiannya batuan dibedakan atas 3 golongan yaitu :
  • Batuan Beku, terjadi dari magma yang cair dan panas, membeku di dalam atau di luar bumi akibat temperaturnya turun. Menurut tempa terbentuknya, dibedakan menjadi tiga yaitu batuan beku luar (magma yang cair dan panas keluar dari kawah gunung berapi saat meletus dan bersentuhan dengan udara yang temperaturnya lebih rendah dipermukaan bumi, akibatnya magma tadi membeku menjadi batuan), Batuan beku sela (magma yang membeku dijalan keluar muka bumi) dan batuan beku dalam (magma yang membeku di dalam bumi)
  • Batuan Sedimen (Endapan), angin. air, es mengkikis batuan dan hasil kikisannya diendapkan ditempat lain. Ditempat baru ini, hasil kikisan diendapkan. Hasil kikisan ini, ada yang tetap gembur, ada yang menjadi keras karena tekanan dari lapisan diatasnya. Contoh yang tetap gembur, antara lain : Pasir pantai dan pasir sungai, sedangkan yang mengeras contohnya : konglomrat dan batuan pasir
  • Batuan Metamorf (malihan), batuan sidemen maupun batuan beku yang telah mengalami perubahan sifat, karena suhu yang tinggi atau tekanan yang berat. Contohnya batu pualam

3 Lapisan air (Hidrosfer)
Hidrosfer adalah semua perairan yang ada di bumi yaitu samudra, lautan, sungai, danau dan air tanah

4 Lapisan udara (Atmosfer)
Atmosfer terdiri dari uap, udara, sphira bulatan yang menyelimuti bumi. Berdasarkan sifatnya, lapisan udara dibagi dalam beberapa lapisan
  • Troposfer, didaerah tropika tinggi troposfer bisa mencapai 18 km sedangkan didaerah kutub tinggi troposfer hanya 6 km. Gejala cuaca sehari-hari seperti awan, embun, hujan, salju, angin terjadi pada lapisan ini. Pada lapisan ini terdapat gejala “Lapse rate” artinya setiap naik 100 m suhu akan turun rata-raa 0, 6 derajat C.
  • Stratosfer, lapisan udara diatas tropopause disebut stratosfer. Kenaikan suhu pada kenaikan ini disebabkan oleh lapisan ozon yang menyerap radiasi ultra violet dari matahari. Stratosfer bagian atas dibatasi oleh stratohouse yang terletak pada ketinggian 60 km. Lapisan diatas stratopaus disebut mesosfer yang terletak pada ketinggian 60 km-80 km.
  • Masosfer, pada lapisan ini ditandai dengan penurunan suhu rata-rata 0, 4 derajat C setiap naik 100 m. Bagian atas mesosfer dibatasi mesopause, lapisan pada atmosfer yang paling rendah kira-kira -100 derajat C terletak pada ketinggian 85 km. Di atas mesopaus terdapat lapisan atmosfer yang terletak pada ketinggian 85 km-300 km. suhu pada lapisan ini, dari -100 derajat C – ratusan bahkan ribuan derajat.
  • Termosfer, lapisan ini dibatasi oleh termospause yang terletak pada ketingian 300 km- 1000 km. Suhu termopause konstan terhadap ketinggian, tetapi berubah dengan waktu. Pada malam hari suhu berkisar antara 300 – 1200 derajat Celcius dan pada siang hari antara 700 – 1700 derajat Celcius.
  • Esosfer, merupakan lapisan udara di atas stratosfer dengan ketinggian lebih dari 80 km, terbagi menjadi daerah D yaitu antara 80-88 km, daerah E antara 88-160 km, dan daerah F di atas 160 km. pada lapisan ini tekanan udara sudah sangat rendah, dan semua molekul gas diubah menjadi ion-ion oleh pancaran sinar matahari dan kosmik. Iniosfer ini amat penting bagi komunikasi, oleh karena lapisan ini mampu memantulkan gelombang radio. 

5.Biosfer
       Adalah bagian dari bumi yang di dalamnya dijumpai organisme hidup. Daerah ini meliputi kedalaman beberapa meter sampai 6-7 km dan ketinggian 6-7 km dari permukaan laut. Populasi yang terpadat terletak di dalam daerah dekat permukaan bumi sampai kedalaman 170 meter dari permukaan laut.


C.
Solusi Pengendalaian Global Warming
Konsumsi total bahan bakar fosil di dunia selalu meningkat. Langkah-langkah yang dilakukan atau yang sedang diskusikan saat ini tidak ada yang dapat mencegah pemanasan global di masa depan. Tantangan yang ada saat ini adalah mengatasi efek yang timbul sambil melakukan langkah-langkah untuk mencegah semakin berubahnya iklim di masa depan. Kerusakan yang parah dapat diatasi dengan berbagai cara. Daerah pantai dapat dilindungi dengan dinding dan penghalang untuk mencegah masuknya air laut. Cara lainnya, pemerintah dapat membantu populasi di pantai untuk pindah ke daerah yang lebih tinggi. Beberapa negara, seperti Amerika Serikat, dapat menyelamatkan tumbuhan dan hewan dengan tetap menjaga koridor (jalur) habitatnya, mengosongkan tanah yang belum dibangun dari selatan ke utara. Spesies-spesies dapat secara perlahan-lahan berpindah sepanjang koridor ini untuk menuju ke habitat yang lebih dingin. Ada dua pendekatan utama untuk memperlambat semakin bertambahnya gas rumah kaca.
1. Menghilangkan karbon
Cara yang paling mudah untuk menghilangkan karbondioksida di udara adalah dengan memelihara pepohonan dan menanam pohon lebih banyak lagi. Pohon, terutama yang muda dan cepat pertumbuhannya, menyerap karbondioksida yang sangat banyak, memecahnya melalui fotosintesis, dan menyimpan karbon dalam kayunya. Di seluruh dunia, tingkat perambahan hutan telah mencapai level yang mengkhawatirkan. Langkah untuk mengatasi hal ini adalah dengan penghutanan kembali yang berperan dalam mengurangi semakin bertambahnya gas rumah kaca. 
         Gas karbondioksida juga dapat dihilangkan secara langsung. Caranya dengan menyuntikkan (menginjeksikan) gas tersebut ke sumur-sumur minyak untuk mendorong agar minyak bumi keluar ke permukaan (lihat Enhanced Oil Recovery). Injeksi juga bisa dilakukan untuk mengisolasi gas ini di bawah tanah seperti dalam sumur minyak, lapisan batubara atau aquifer. Hal ini telah dilakukan di salah satu anjungan pengeboran lepas pantai Norwegia, di mana karbondioksida yang terbawa ke permukaan bersama gas alam
ditangkap dan diinjeksikan kembali ke aquifer sehingga tidak dapat kembali ke permukaan.
        Salah satu sumber penyumbang karbondioksida adalah pembakaran bahan bakar fosil. Pada saat itu, batubara menjadi sumber energi dominan untuk kemudian digantikan oleh minyak bumi pada pertengahan abad ke-19. Pada abad ke-20, energi gas mulai biasa digunakan di dunia sebagai sumber energi. Perubahan tren penggunaan bahan bakar fosil ini sebenarnya secara tidak langsung telah mengurangi jumlah karbondioksida yang dilepas ke udara, karena gas melepaskan karbondioksida lebih sedikit bila dibandingkan dengan minyak apalagi bila dibandingkan dengan batubara. Walaupun demikian, penggunaan energi terbaharui dan energi nuklir lebih mengurangi pelepasan karbondioksida ke udara. Energi nuklir, walaupun kontroversial karena alasan keselamatan dan limbahnya yang berbahaya, bahkan tidak melepas karbondioksida sama sekali.
2. Persetujuan internasional
Kerjasama internasional diperlukan untuk mensukseskan pengurangan gas-gas rumah kaca. Di tahun 1992, pada Earth Summit di Rio de Janeiro, Brazil, 150 negara berikrar untuk menghadapi masalah gas rumah kaca dan setuju untuk menterjemahkan maksud ini dalam suatu perjanjian yang mengikat. Pada tahun 1997 di Jepang, 160 negara merumuskan persetujuan yang lebih kuat yang dikenal dengan Protokol Kyoto.
Perjanjian ini, yang belum diimplementasikan, menyerukan kepada 38 negara-negara industri yang memegang persentase paling besar dalam melepaskan gas-gas rumah kaca untuk memotong emisi mereka ke tingkat 5 persen di bawah emisi tahun 1990. Pengurangan ini harus dapat dicapai paling lambat tahun 2012. Pada mulanya, Amerika Serikat mengajukan diri untuk melakukan pemotongan yang lebih ambisius, menjanjikan pengurangan emisi hingga 7 persen di bawah tingkat 1990; Uni Eropa, yang menginginkan perjanjian yang lebih keras, berkomitmen 8 persen; dan Jepang 6 persen. Sisa 122 negara lainnya, sebagian besar negara berkembang, tidak diminta untuk berkomitmen dalam pengurangan emisi gas.
Banyak orang mengkritik Protokol Kyoto terlalu lemah. Bahkan jika perjanjian ini dilaksanakan segera, ia hanya akan sedikit mengurangi bertambahnya konsentrasi gas-gas rumah kaca di atmosfer. Suatu tindakan yang keras akan diperlukan nanti, terutama karena negara-negara berkembang yang dikecualikan dari perjanjian ini akan menghasilkan separuh dari emisi gas rumah kaca pada 2035. Penentang protokol ini memiliki posisi yang sangat kuat. Penolakan terhadap perjanjian ini di Amerika Serikat terutama dikemukakan oleh industri minyak, industri batubara dan perusahaan-perusahaan lainnya yang produksinya tergantung pada bahan bakar fosil. Para penentang ini mengklaim bahwa biaya ekonomi yang diperlukan untuk melaksanakan Protokol Kyoto dapat menjapai 300 milyar dollar AS, terutama disebabkan oleh biaya energi. Sebaliknya pendukung Protokol Kyoto percaya bahwa biaya yang diperlukan hanya sebesar 88 milyar dollar AS dan dapat lebih kurang lagi serta dikembalikan dalam bentuk penghematan uang setelah mengubah ke peralatan, kendaraan, dan proses industri yang lebih effisien. Pada suatu negara dengan kebijakan lingkungan yang ketat, ekonominya dapat terus tumbuh walaupun berbagai macam polusi telah dikurangi. Akan tetapi membatasi emisi karbondioksida terbukti sulit dilakukan. Sebagai contoh, Belanda, negara industrialis besar yang juga pelopor lingkungan, telah berhasil mengatasi berbagai macam polusi tetapi gagal untuk memenuhi targetnya dalam mengurangi produksi karbondioksida.Setelah tahun 1997, para perwakilan dari penandatangan Protokol Kyoto bertemu secara reguler untuk menegoisasikan isu-isu yang belum terselesaikan seperti peraturan, metode dan pinalti yang wajib diterapkan pada setiap negara untuk memperlambat emisi gas rumah kaca.
Tapi masih ada beberapa cara mudah yang biasa kita lakukan untuk pengendalian masalah ini, yaitu ;
  1. Matikan listrik. (jika tidak digunakan, jangan tinggalkan alat elektronik dalam keadaan standby. Cabut charger telp. genggam dari stop kontak. Meski listrik tak mengeluarkan emisi karbon, pembangkit listrik PLN menggunakan bahan baker fosil penyumbang besar emisi).
  2. Tanam pohon di lingkungan sekitar Anda.
  3. Jemur pakaian di luar. Angin dan panas matahari lebih baik ketimbang memakai mesin (dryer) yang banyak mengeluarkan emisi karbon.
  4.  Gunakan kendaraan umum (untuk mengurangi polusi udara).
  5. Hemat penggunaan kertas (bahan bakunya berasal dari kayu).
  6. Say no to plastic. Hampir semua sampah plastic menghasilkan gas berbahaya ketika dibakar. Atau Anda juga dapat membantu mengumpulkannya untuk didaur ulang kembali.



BAB III
METODOLOGI PENELITIAN
Melalui Persetujuan Protokol Kyoto
Protokol Kyoto adalah sebuah amandemen terhadap Konvensi Rangka Kerja PBB tentang Perubahan Iklim (UNFCCC), sebuah persetujuan internasional mengenai pemanasan global. Negara-negara yang meratifikasi protokol ini berkomitmen untuk mengurangi emisi/pengeluaran karbon dioksida dan lima gas rumah kaca lainnya, atau bekerja sama dalam perdagangan emisi jika mereka menjaga jumlah atau menambah emisi gas-gas tersebut, yang telah dikaitkan dengan pemanasan global. Jika sukses diberlakukan, Protokol Kyoto diprediksi akan mengurangi rata-rata cuaca global antara 0,02°C dan 0,28°C pada tahun 2050. (sumber: Nature, Oktober 2003)
Nama resmi persetujuan ini adalah Kyoto Protocol to the United Nations Framework Convention on Climate Change (Protokol Kyoto mengenai Konvensi Rangka Kerja PBB tentang Perubahan Iklim). Ia dinegosiasikan di Kyoto pada Desember 1997, dibuka untuk penanda tanganan pada 16 Maret 1998 dan ditutup pada 15 Maret 1999. Persetujuan ini mulai berlaku pada 16 Februari 2005 setelah ratifikasi resmi yang dilakukan Rusia pada 18 November 2004.
Menurut rilis pers dari Program Lingkungan PBB:
Protokol Kyoto adalah sebuah persetujuan sah di mana negara-negara perindustrian akan mengurangi emisi gas rumah kaca mereka secara kolektif sebesar 5,2% dibandingkan dengan tahun 1990 (namun yang perlu diperhatikan adalah, jika dibandingkan dengan perkiraan jumlah emisi pada tahun 2010 tanpa Protokol, target ini berarti pengurangan sebesar 29%). Tujuannya adalah untuk mengurangi rata-rata emisi dari enam gas rumah kaca – karbon dioksida, metan, nitrous oxide, sulfur heksafluorida, HFC, dan PFC – yang dihitung sebagai rata-rata selama masa lima tahun antara 2008-12. Target nasional berkisar dari pengurangan 8% untuk Uni Eropa, 7% untuk AS, 6% untuk Jepang, 0% untuk Rusia, dan penambahan yang diizinkan sebesar 8% untuk Australia dan 10% untuk Islandia.
Protokol Kyoto adalah protokol kepada Konvensi Rangka Kerja PBB tentang Perubahan Iklim (UNFCCC, yang diadopsi pada Pertemuan Bumi di Rio de Janeiro pada 1992). Semua pihak dalam UNFCCC dapat menanda tangani atau meratifikasi Protokol Kyoto, sementara pihak luar tidak diperbolehkan. Protokol Kyoto diadopsi pada sesi ketiga Konferensi Pihak Konvensi UNFCCC pada 1997 di Kyoto, Jepang. Sebagian besar ketetapan Protokol Kyoto berlaku terhadap negara-negara maju yang disenaraikan dalam Annex I dalam UNFCCC.
Pada saat pemberlakuan persetujuan pada Februari 2005, ia telah diratifikasi oleh 141 negara, yang mewakili 61% dari seluruh emisi. Negara-negara tidak perlu menanda tangani persetujuan tersebut agar dapat meratifikasinya. Daftar terbaru para pihak yang telah meratifikasinya ada di sini. Menurut syarat-syarat persetujuan protokol, ia mulai berlaku “pada hari ke-90 setelah tanggal saat di mana tidak kurang dari 55 Pihak Konvensi, termasuk Pihak-pihak dalam Annex I yang bertanggung jawab kepada setidaknya 55 persen dari seluruh emisi karbon dioksida pada 1990 dari Pihak-pihak dalam Annex I, telah memberikan alat ratifikasi mereka, penerimaan, persetujuan atau pemasukan.” Dari kedua syarat tersebut, bagian “55 pihak” dicapai pada 23 Mei 2002 ketika Islandia meratifikasi. Ratifikasi oleh Rusia pada 18 November 2004 memenuhi syarat “55 persen” dan menyebabkan pesetujuan itu mulai berlaku pada 16 Februari 2005. Hingga 3 Desember 2007, 174 negara telah meratifikasi protokol tersebut, termasuk Kanada, Tiongkok, India, Jepang, Selandia Baru, Rusia dan 25 negara anggota Uni Eropa, serta Rumania dan Bulgaria. Ada dua negara yang telah menanda tangani namun belum meratifikasi protokol tersebut: Amerika Serikat (tidak berminat untuk meratifikasi), dan Kazakstan. Pada awalnya AS, Australia, Italia, Tiongkok, India dan negara-negara berkembang telah bersatu untuk melawan strategi terhadap adanya kemungkinan Protokol Kyoto II atau persetujuan lainnya yang bersifat mengekang. Namun pada awal Desember 2007 Australia akhirnya ikut seta meratifikasi protokol tersebut setelah terjadi pergantian pimpinan di negera tersebut.
Melalui Cara-Cara Lain
Melalui  beberapa cara mudah yang telah  kita ketahui untuk pengendalian masalah ini, juga akan berpengaruh terhadap bumi, yang tentunya kita mulai dari diri kita sendiri.

BAB IV
KESIMPULAN DAN SARAN
A. Kesimpulan
Pemanasan global telah menjadi permasalahan yang menjadi sorotan utama umat manusia. Fenomena ini bukan lain diakibatkan oleh perbuatan manusia sendiri dan dampaknya diderita oleh manusia itu juga. Untuk mengatasi pemanasan global diperlukan usaha yang sangat keras karena hampir mustahil untuk diselesaikan saat ini. Pemanasan global memang sulit diatasi, namun kita bisa mengurangi efeknya.Penanggulangan hal ini adalah kesadaran kita terhadap kehidupan bumi di masa depan. Apabila kita telah menanamkan kecintaan terhadap bumi ini maka pmanasan global hanyalah sejarah kelam yang pernah menimpa bumi ini.
B. Saran
Kehidupan ini berawal dari kehidupan di bumi jauh sebelum makhluk hidup ada. Maka dari itu untuk menjaga dan melestarikan bumi ini kita harus lama-lama memikirkannya. Sampai pada satu sisi dimana bumi ini telah tua dan memohon agar kita menjaga serta melstarikannya. Marilah kita bergotong royang untuk menyelematkan bumi yang telah memberikan kita kehidupan yang sempurna ini. Stop global warming.







           
DAFTAR PUSTAKA
Hardianto, Joko. 2009. IPA Terpadu. Jakarta. CV Seti_Aji http://ms.wikipedia.org/wiki/Bumi (diakses 27 Oktober 2011) 

Notohadypra, Tejo. 2006. Bumi. (Http://Googel.Co.Id, diakses 27 Oktober 2011)

Rahmad, Agus. 2008. Pemanasan Global atau Global Warming. (Http://Googel.Co.Id, diakses 27 Oktober 2011)
Sutresna, Nana. 2006. Ilmu Pengetahuan Alam. Jakarta: Grafindo Media Pratama.

Sutrisno, Rudi. 2008. Global Warming. (Http://Googel.Co.Id, diakses 27 Oktober 2011)





Kamis, 09 Februari 2012

Sejarah Fisika


SEJARAH FISIKA

Fisika (Bahasa Yunani: physikos, "alamiah", dan physis, "Alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Fisikawan mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos.
Beberapa sifat yang dipelajari dalam fisika merupakan sifat yang ada dalam semua sistem materi yang ada, seperti hukum kekekalan energi. Sifat semacam ini sering disebut sebagai hukum fisika. Fisika sering disebut sebagai "ilmu paling mendasar", karena setiap ilmu alam lainnya (biologi, kimia, geologi, dan lain-lain) mempelajari jenis sistem materi tertentu yang mematuhi hokum fisika. Misalnya, kimia adalah ilmu tentang molekul dan zat kimia yang dibentuknya. Sifat suatu zat kimia ditentukan oleh sifat molekul yang membentuknya, yang dapat dijelaskan oleh ilmu fisika seperti mekanika kuantum, termodinamika, dan elektromagnetika.

Fisika juga berkaitan erat dengan matematika. Teori fisika banyak dinyatakan dalam notasi matematis, dan matematika yang digunakan biasanya lebih rumit daripada matematika yang digunakan dalam bidang sains lainnya. Perbedaan antara fisika dan matematika adalah: fisika berkaitan dengan pemerian dunia material, sedangkan matematika berkaitan dengan pola-pola abstrak yang tak selalu berhubungan dengan dunia material. Namun, perbedaan ini tidak selalu tampak jelas. Ada wilayah luas penelitan yang beririsan antara fisika dan matematika, yakni fisika matematis, yang mengembangkan struktur matematis bagi teori-teori fisika.
Sejak jaman purbakala, orang telah mencoba untuk mengerti sifat dari benda: mengapa objek yang tidak ditopang jatuh ke tanah, mengapa material yang berbeda memiliki properti yang berbeda, dan seterusnya. Lainnya adalah sifat dari jagad raya, seperti bentuk Bumi dan sifat dari objek celestial seperti Matahari dan Bulan. Sejarah fisika dimulai pada tahun sekitar 2400 SM, ketika kebudayaan Harappan menggunakan suatu benda untuk memperkirakan dan menghitung sudut bintang di angkasa. Sejak saat itu fisika terus berkembang sampai ke level sekarang. Perkembangan ini tidak hanya membawa perubahan di dalam bidang dunia benda, matematika dan filosofi namun juga, melalui teknologi, membawa perubahan ke dunia sosial masyarakat. Revolusi ilmu yang berlangsung terjadi pada sekitar tahun 1600 dapat dikatakan menjadi batas antara pemikiran purba dan lahirnya fisika klasik. Dan akhirnya berlanjut ke tahun 1900 yang menandakan mulai berlangsungnya era baru yaitu era fisika modern. Di era ini ilmuwan tidak melihat adanya penyempurnaan di bidang ilmu pengetahuan, pertanyaan demi pertanyaan terus bermunculan tanpa henti, dari luasnya galaksi, sifat alami dari kondisi vakum sampai lingkungan subatomik. Daftar persoalan dimana fisikawan harus pecahkan terus bertambah dari waktu ke waktu.
Beberapa teori diusulkan dan banyak yang salah. Teori tersebut banyak tergantung dari istilah filosofi, dan tidak pernah dipastikan oleh eksperimen sistematik seperti yang populer sekarang ini. Ada pengecualian dan anakronisme: contohnya, pemikir Yunani Archimedes menurunkan banyak deskripsi kuantitatif yang benar dari mekanik dan hidrostatik.
Fisika klasik adalah fisika yang didasari prinsip-prinsip yang dikembangkan sebelum bangkitnya teori kuantum, biasanya termasuk teori relativitas khusus dan teori relativitas umum.
Cabang-cabang yang termasuk fisika klasik antara lain adalah:
a)        Mekanika klasik
·       Hukum gerak Newton
·       Lagrangian dan mekanika Hamiltonian
b)        Elektrodinamika klasik (persamaan Maxwell)
c)        Termodinamika klasik
d)       Teori relativitas khusus dan teori relativitas umum
e)        Teori chaos klasik
Dibandingkan dengan fisika klasik, fisika modern adalah istilah yang lebih longgar, yang dapat merujuk hanya pada fisika kuantum atau secara umum pada fisika abad ke-20 dan ke-21 dan karenanya selalu mengikutsertakan teori kuantum dan juga dapat termasuk relativitas.
Pada awal abad 17, Galileo membuka penggunaan eksperimen untuk memastikan kebenaran teori fisika, yang merupakan kunci dari metode sains. Galileo memformulasikan dan berhasil mengetes beberapa hasil dari dinamika mekanik, terutama Hukum Inert. Pada 1687, Isaac Newton menerbitkan Filosofi Natural Prinsip Matematika, memberikan penjelasan yang jelas dan teori fisika yang sukses: Hukum gerak Newton, yang merupakan sumber dari mekanika klasik; dan Hukum Gravitasi Newton, yang menjelaskan gaya dasar gravitasi. Kedua teori ini cocok dalam eksperimen. Prinsipia juga memasukan beberapa teori dalam dinamika fluid. Mekanika klasik dikembangkan besar-besaran oleh Joseph-Louis de Lagrange, William Rowan Hamilton, dan lainnya, yang menciptakan formula, prinsip, dan hasil baru. Hukum Gravitas memulai bidang astrofisika, yang menggambarkan fenomena astronomi menggunakan teori fisika.
Sejak abad 18 dan seterusnya, termodinamika dikembangkan oleh Robert Boyle, Thomas Young, dan banyak lainnya. Pada 1733, Daniel Bernoulli menggunakan argumen statistika dalam mekanika klasik untuk menurunkan hasil termodinamika, memulai bidang mekanika statistik. Pada 1798, Benjamin Thompson mempertunjukkan konversi kerja mekanika ke dalam panas, dan pada 1847 James Joule menyatakan hukum konservasi energi, dalam bentuk panas dan juga dalam energi mekanika.
Sifat listrik dan magnetisme dipelajari oleh Michael Faraday, George Ohm, dan lainnya. Pada 1855, James Clerk Maxwell menyatukan kedua fenomena menjadi satu teori elektromagnetisme, dijelaskan oleh persamaan Maxwell. Perkiraan dari teori ini adalah cahaya adalah gelombang elektromagnetik.
Budaya penelitian fisika berbeda dengan ilmu lainnya karena adanya pemisahan teori dan eksperimen. Sejak abad kedua puluh, kebanyakan fisikawan perseorangan mengkhususkan diri meneliti dalam fisika teoritis atau fisika eksperimental saja, dan pada abad kedua puluh, sedikit saja yang berhasil dalam kedua bidang tersebut. Sebaliknya, hampir semua teoris dalam biologi dan kimia juga merupakan eksperimentalis yang sukses.
Teoris berusaha mengembangkan teori yang dapat menjelaskan hasil eksperimen yang telah dicoba dan dapat memperkirakan hasil eksperimen yang akan datang. Sementara itu, eksperimentalis menyusun dan melaksanakan eksperimen untuk menguji perkiraan teoretis. Meskipun teori dan eksperimen dikembangkan secara terpisah, mereka saling bergantung. Kemajuan dalam fisika biasanya muncul ketika eksperimentalis membuat penemuan yang tak dapat dijelaska teori yang ada, sehingga mengharuskan dirumuskannya teori-teori baru. Tanpa eksperimen, penelitian teoretis sering berjalan ke arah yang salah; salah satu contohnya adalah teori-M, teori populer dalam fisika energi-tinggi, karena eksperimen untuk mengujinya belum pernah disusun.
Meskipun fisika membahas beraneka ragam sistem, ada beberapa teori yang digunakan secara keseluruhan dalam fisika, bukan di satu bidang saja. Setiap teori ini diyakini benar adanya, dalam wilayah kesahihan tertentu. Contohnya, teori mekanika klasik dapat menjelaskan pergerakan benda dengan tepat, asalkan benda ini lebih besar daripada atom dan bergerak dengan kecepatan jauh lebih lambat daripada kecepatan cahaya. Teori-teori ini masih terus diteliti; contohnya, aspek mengagumkan dari mekanika klasik yang dikenal sebagai teori chaos ditemukan pada abad kedua puluh, tiga abad setelah dirumuskan oleh Isaac Newton. Namun, hanya sedikit fisikawan yang menganggap teori-teori dasar ini menyimpang. Oleh karena itu, teori-teori tersebut digunakan sebagai dasar penelitian menuju topik yang lebih khusus, dan semua pelaku fisika, apa pun spesialisasinya, diharapkan memahami teori-teori tersebut.
Riset dalam fisika dibagi beberapa bidang yang mempelajari aspek yang berbeda dari dunia materi. Fisika benda kondensi, diperkirakan sebagai bidang fisika terbesar, mempelajari properti benda besar, seperti benda padat dan cairan yang kita temui setiap hari, yang berasal dari properti dan interaksi mutual dari atom. Bidang Fisika atomik, molekul, dan optik berhadapan dengan individual atom dan molekul, dan cara mereka menyerap dan mengeluarkan cahaya. Bidang Fisika partikel, juga dikenal sebagai "Fisika energi-tinggi", mempelajari property partikel super kecil yang jauh lebih kecil dari atom, termasuk partikel dasar yang membentuk benda lainnya. Terakhir, bidang Astrofisika menerapkan hukum fisika untuk menjelaskan fenomena astronomi, berkisar dari matahari dan objek lainnya dalam tata surya ke jagad raya secara keseluruhan.
Riset fisika mengalami kemajuan konstan dalam banyak bidang, dan masih akan tetap begitu jauh di masa depan.
Dalam fisika benda kondensi, masalah teoritis tak terpecahkan terbesar adalah penjelasan superkonduktivitas suhu-tinggi. Banyak usaha dilakukan untuk membuat spintronik dan komputer kuantum bekerja.
Dalam fisika partikel, potongan pertama dari bukti eksperimen untuk fisika di luar Model Standar telah mulai menghasilkan. Yang paling terkenal adalah penunjukan bahwa neutrino memiliki massa bukan-nol. Hasil eksperimen ini nampaknya telah menyelesaikan masalah solar neutrino yang telah berdirilama dalam fisika matahari. Fisika neutrino besar merupakan area riset eksperimen dan teori yang aktif. Dalam beberapa tahun ke depan, pemercepat partikel akan mulai meneliti skala energi dalam jangkauan TeV, yang di mana para eksperimentalis berharap untuk menemukan bukti untuk Higgs boson dan partikel supersimetri.
Para teori juga mencoba untuk menyatukan mekanika kuantum dan relativitas umum menjadi satu teori gravitasi kuantum, sebuah program yang telah berjalan selama setengah abad, dan masih belum menghasilkan buah. Kandidat atas berikutnya adalah Teori-M, teori superstring, dan gravitasi kuantum loop.
Banyak fenomena astronomikal dan kosmologikal belum dijelaskan secara memuaskan, termasuk keberadaan sinar kosmik energi ultra-tinggi, asimetri baryon, pemercepatan alam semesta dan percepatan putaran anomaly galaksi.
Meskipun banyak kemajuan telah dibuat dalam energi-tinggi, kuantum, dan fisika astronomikal, banyak fenomena sehari-hari lainnya, menyangkut system kompleks, chaos, atau turbulens masih dimengerti sedikit saja. Masalah rumit yang sepertinya dapat dipecahkan oleh aplikasi pandai dari dinamika dan mekanika, seperti pembentukan tumpukan pasir, "node" dalam air "trickling", teori katastrof, atau pengurutan-sendiri dalam koleksi heterogen yang bergetar masih tak terpecahkan. Fenomena rumit ini telah menerima perhatian yang semakin banyak sejak 1970-an untuk beberapa alasan, tidak lain dikarenakan kurangnya metode matematika modern dan komputer yang dapat menghitung sistem kompleks untuk dapat dimodelin dengan cara baru. Hubungan antar disiplin dari fisika kompleks juga telah meningkat, seperti dalam pelajaran turbulens dalam aerodinamika atau pengamatan pola pembentukan dalam system biologi. Pada 1932, Horrace Lamb meramalkan: Saya sudah tua sekarang, dan ketika saya meninggal dan pergi ke surga ada dua hal yang saya harap dapat diterangkan. Satu adalah elektrodinamika kuantum, dan satu lagi adalah gerakan turbulens dari fluida. Dan saya lebih optimis terhadap yang pertama.

KESIMPULAN

Fisika adalah sains atau ilmu tentang alam. Perbedaan antara fisika dan matematika adalah: fisika berkaitan dengan pemerian dunia material, sedangkan matematika berkaitan dengan pola-pola abstrak yang tak selalu berhubungan dengan dunia material. Sejarah fisika dimulai pada tahun sekitar 2400 SM, ketika kebudayaan Harappan menggunakan suatu benda untuk memperkirakan dan menghitung sudut bintang di angkasa. Revolusi ilmu yang berlangsung terjadi pada sekitar tahun 1600 dapat dikatakan menjadi batas antara pemikiran purba dan lahirnya fisika klasik. Dan akhirnya berlanjut ke tahun 1900 yang menandakan mulai berlangsungnya era baru yaitu era fisika modern. Fisika klasik adalah fisika yang didasari prinsip-prinsip yang dikembangkan sebelum bangkitnya teori kuantum. Cabang-cabang yang termasuk fisika klasik antara lain adalah:
a.         Mekanika klasik
·       Hukum gerak Newton
·       Lagrangian dan mekanika Hamiltonian
b.        Elektrodinamika klasik (persamaan Maxwell)
c.         Termodinamika klasik
d.        Teori relativitas khusus dan teori relativitas umum
e.         Teori chaos klasik
Dibandingkan dengan fisika klasik, fisika modern adalah istilah yang lebih longgar, yang dapat merujuk hanya pada fisika kuantum atau secara umum pada fisika abad ke-20 dan ke-21 dan karenanya selalu mengikutsertakan teori kuantum dan juga dapat termasuk relativitas.
Pada awal abad 17, Galileo memformulasikan dan berhasil mengetes beberapa hasil dari dinamika mekanik, terutama Hukum Inert. Pada 1687, Isaac Newton menerbitkan Filosofi Natural Prinsip Matematika, memberikan penjelasan yang jelas dan teori fisika yang sukses: Hukum gerak Newton, yang merupakan sumber dari mekanika klasik; dan Hukum Gravitasi Newton, yang menjelaskan gaya dasar gravitasi. Prinsipia juga memasukan beberapa teori dalam dinamika fluid. Mekanika klasik dikembangkan besar-besaran oleh Joseph-Louis de Lagrange, William Rowan Hamilton, dan lainnya, yang menciptakan formula, prinsip, dan hasil baru. Hukum Gravitas memulai bidang astrofisika, yang menggambarkan fenomena astronomi menggunakan teori fisika.
Sejak abad 18 dan seterusnya, termodinamika dikembangkan oleh Robert Boyle, Thomas Young, dan banyak lainnya. Pada 1733, Daniel Bernoulli menggunakan argumen statistika dalam mekanika klasik untuk menurunkan hasil termodinamika, memulai bidang mekanika statistik. Pada 1798, Benjamin Thompson mempertunjukkan konversi kerja mekanika ke dalam panas, dan pada 1847 James Joule menyatakan hukum konservasi energi, dalam bentuk panas dan juga dalam energi mekanika.
Sifat listrik dan magnetisme dipelajari oleh Michael Faraday, George Ohm, dan lainnya. Pada 1855, James Clerk Maxwell menyatukan kedua fenomena menjadi satu teori elektromagnetisme, dijelaskan oleh persamaan Maxwell. Perkiraan dari teori ini adalah cahaya adalah gelombang elektromagnetik.
Sejak abad kedua puluh, kebanyakan fisikawan perseorangan mengkhususkan diri meneliti dalam fisika teoritis atau fisika eksperimental saja, dan pada abad kedua puluh, sedikit saja yang berhasil dalam kedua bidang tersebut. Sebaliknya, hampir semua teoris dalam biologi dan kimia juga merupakan eksperimentalis yang sukses.





SEJARAH PERKEMBANGAN ILMU FISIKA

Nah para sahabat fisika ingin tahu bagaimana sejarah perkembangan ilmu fisika itu? Kalau dicari asal-usulnya ternyata menarik juga lho. Bahkan sistem kalender sampai mesin mobil yang kawan-kawan sering temui dalam kehidupan sehari-hari ternyata para ilmuwan fisika yang menemukannya.
Menurut Richtmeyer, sejarah perkembangan ilmu fisika dibagi dalam empat periode yaitu:
a.      Periode Pertama,
Dimulai dari zaman prasejarah sampai tahun 1550 an. Pada periode pertama ini dikumpulkan berbagai fakta fisis yang dipakai untuk membuat perumusan empirik. Dalam periode pertama ini belum ada penelitian yang sistematis. Beberapa penemuan pada periode ini diantaranya :
·      2400000 SM - 599 SM: Di bidang astronomi sudah dihasilkan Kalender Mesir dengan 1 tahun = 365 hari, prediksi gerhana, jam matahari, dan katalog bintang. Dalam Teknologi sudah ada peleburan berbagai logam, pembuatan roda, teknologi bangunan (piramid), standar berat, pengukuran, koin (mata uang).
·      600 SM – 530 M: Perkembangan ilmu dan teknologi sangat terkait dengan perkembangan matematika. Dalam bidang Astronomi sudah ada pengamatan tentang gerak benda langit (termasuk bumi), jarak dan ukuran benda langit. Dalam bidang sain fisik Physical Science, sudah ada Hipotesis Democritus bahwa materi terdiri dari atom-atom. Archimedes memulai tradisi “Fisika Matematika” untuk menjelaskan tentang katrol, hukum-hukum hidrostatika dan lain-lain. Tradisi Fisika Matematika berlanjut sampai sekarang.
·      530 M – 1450 M: Mundurnya tradisi sains di Eropa dan pesatnya perkembangan sains di Timur Tengah. Dalam kurun waktu ini terjadi Perkembangan Kalkulus. Dalam bidang Astronomi ada “Almagest” karya Ptolomeous yang menjadi teks standar untuk astronomi, teknik observasi berkembang, trigonometri sebagai bagian dari kerja astronomi berkembang. Dalam Sain Fisik, Aristoteles berpendapat bahwa gerak bisa terjadi jika ada yang nendorong secara terus menerus; kemagnetan berkembang ; Eksperimen optika berkembang, ilmu Kimia berkembang (Alchemy).
·      1450 M- 1550: Ada publikasi teori heliosentris dari Copernicus yang menjadi titik penting dalam revolusi saintifik. Sudah ada arah penelitian yang sistematis
b.      Periode Kedua
Dimulai dari tahun 1550an sampai tahun 1800an. Pada periode kedua ini mulai dikembangkan metoda penelitian yang sistematis dengan Galileo dikenal sebagai pencetus metoda saintifik dalam penelitian. Hasil-hasil yang didapatkan antara lain:
·           Kerja sama antara eksperimentalis dan teoris menghasilkan teori baru pada gerak planet.
·           Newton: meneruskan kerja Galileo terutama dalam bidang mekanika menghasilkan hukum-hukum gerak yang sampai sekarang masih dipakai.
·           Dalam Mekanika selain Hukum-hukum Newton dihasilkan pula Persamaan Bernoulli, Teori Kinetik Gas, Vibrasi Transversal dari Batang, Kekekalan Momentum Sudut, Persamaan Lagrange.
·           Dalam Fisika Panas ada penemuan termometer, azas Black, dan Kalorimeter.
·           Dalam Gelombang Cahaya ada penemuan aberasi dan pengukuran kelajuan cahaya.
·           Dalam Kelistrikan ada klasifikasi konduktor dan nonkonduktor, penemuan elektroskop, pengembangan teori arus listrik yang serupa dengan teori penjalaran panas dan Hukum Coulomb.
c.       Periode Ketiga
Dimulai dari tahun 1800an sampai 1890an. Pada periode ini diformulasikan konsep-konsep fisika yang mendasar yang sekarang kita kenal dengan sebutan Fisika Klasik. Dalam periode ini Fisika berkembang dengan pesat terutama dalam mendapatkan formulasi-formulasi umum dalam Mekanika, Fisika Panas, Listrik-Magnet dan Gelombang, yang masih terpakai sampai saat ini.
·           Dalam Mekanika diformulasikan Persamaan Hamiltonian (yang kemudian dipakai dalam Fisika Kuantum), Persamaan gerak benda tegar, teori elastisitas, hidrodinamika.
·           Dalam Fisika Panas diformulasikan Hukum-hukum termodinamika, teori kinetik gas, penjalaran panas dan lain-lain.
·           Dalam Listrik-Magnet diformulasikan Hukum Ohm, Hukum Faraday, Teori Maxwell dan lain-lain.
·           Dalam Gelombang diformulasikan teori gelombang cahaya, prinsip interferensi, difraksi dan lain-lain.
d.      Periode Keempat
Dimulai dari tahun 1890an sampai sekarang. Pada akhir abad ke 19 ditemukan beberapa fenomena yang tidak bisa dijelaskan melalui fisika klasik. Hal ini menuntut pengembangan konsep fisika yang lebih mendasar lagi yang sekarang disebut Fisika Modern. Dalam periode ini dikembangkan teori-teori yang lebih umum yang dapat mencakup masalah yang berkaitan dengan kecepatan yang sangat tinggi (relativitas) atau/dan yang berkaitan dengan partikel yang sangat kecil (teori kuantum).
·           Teori Relativitas yang dipelopori oleh Einstein menghasilkan beberapa hal diantaranya adalah kesetaraan massa dan energi E=mc2 yang dipakai sebagai salah satu prinsip dasar dalam transformasi partikel.
·           Teori Kuantum, yang diawali oleh karya Planck dan Bohr dan kemudian dikembangkan oleh Schroedinger, Pauli , Heisenberg dan lain-lain, melahirkan teori-teori tentang atom, inti, partikel sub atomik, molekul, zat padat yang sangat besar perannya dalam pengembangan ilmu dan teknologi.

KESIMPULAN

Menurut Richtmeyer, sejarah perkembangan ilmu fisika dibagi dalam empat periode yaitu:
a.      Periode Pertama,
Dimulai dari zaman prasejarah sampai tahun 1550 an. Pada periode pertama ini dikumpulkan berbagai fakta fisis yang dipakai untuk membuat perumusan empirik. Dalam periode pertama ini belum ada penelitian yang sistematis.
b.      Periode Kedua
Dimulai dari tahun 1550an sampai tahun 1800an. Pada periode kedua ini mulai dikembangkan metoda penelitian yang sistematis dengan Galileo dikenal sebagai pencetus metoda saintifik dalam penelitian.
c.       Periode Ketiga
Dimulai dari tahun 1800an sampai 1890an. Pada periode ini diformulasikan konsep-konsep fisika yang mendasar yang sekarang kita kenal dengan sebutan Fisika Klasik. Dalam periode ini Fisika berkembang dengan pesat terutama dalam mendapatkan formulasi-formulasi umum dalam Mekanika, Fisika Panas, Listrik-Magnet dan Gelombang, yang masih terpakai sampai saat ini.
d.      Periode Keempat
Dimulai dari tahun 1890an sampai sekarang. Pada akhir abad ke 19 ditemukan beberapa fenomena yang tidak bisa dijelaskan melalui fisika klasik. Hal ini menuntut pengembangan konsep fisika yang lebih mendasar lagi yang sekarang disebut Fisika Modern. Dalam periode ini dikembangkan teori-teori yang lebih umum yang dapat mencakup masalah yang berkaitan dengan kecepatan yang sangat tinggi (relativitas) atau/dan yang berkaitan dengan partikel yang sangat kecil (teori kuantum).

TOKOH-TOKOH FISIKA
1.     NICOLAUS COPERNICUS 1473-1543
Astronom (ahli perbintangan) berkebangsaan Polandia yang bernama Nicolaus Copernicus (nama Polandianya: Mikolaj Kopernik), dilahirkan tahun 1473 di kota Torun di tepi sungai Vistula, Polandia. Dia berasal dari keluarga berada. Sebagai anak muda belia, Copernicus belajar di Universitas Cracow, selaku murid yang menaruh minat besar terhadap ihwal ilmu perbintangan. Pada usia dua puluhan dia pergi melawat ke Italia, belajar kedokteran dan hukum di Universitas Bologna dan Padua yang kemudian dapat gelar Doktor dalam hukum gerejani dari Universitas Ferrara. Copernicus menghabiskan sebagian besar waktunya tatkala dewasa selaku staf pegawai Katedral di Frauenburg (istilah Polandia: Frombork), selaku ahli hukum gerejani yang sesungguhnya Copernicus tak pernah jadi astronom profesional, kerja besarnya yang membikin namanya melangit hanyalah berkat kerja sambilan.
Selama berada di Italia, Copernicus sudah berkenalan dengan ide-ide filosof Yunani Aristarchus dari Samos (abad ke-13 SM). Filosof ini berpendapat bahwa bumi dan planit-planit lain berputar mengitari matahari. Copernicus jadi yakin atas kebenaran hipotesa “heliocentris” ini, dan tatkala dia menginjak usia empat puluh tahun dia mulai mengedarkan buah tulisannya diantara teman-temannya dalam bentuk tulisan-tulisan ringkas, mengedepankan cikal bakal gagasannya sendiri tentang masalah itu. Copernicus memerlukan waktu bertahun-tahun melakukan pengamatan, perhitungan cermat yang diperlukan untuk penyusunan buku besarnya De Revolutionibus Orbium Coelestium (Tentang Revolusi Bulatan Benda-benda Langit), yang melukiskan teorinya secara terperinci dan mengedepankan pembuktian-pembuktiannya.
Di tahun 1533, tatkala usianya menginjak enam puluh tahun, Copernicus mengirim berkas catatan-catatan ceramahnya ke Roma. Di situ dia mengemukakan prinsip-prinsip pokok teorinya tanpa mengakibatkan ketidaksetujuan Paus. Baru tatkala umurnya sudah mendekati tujuh puluhan, Copernicus memutuskan penerbitan bukunya, dan baru tepat pada saat meninggalnya dia dikirimi buku cetakan pertamanya dari si penerbit. Ini tanggal 24 Mei 1543.
Dalam buku itu Copernicus dengan tepat mengatakan bahwa bumi berputar pada porosnya, bahwa bulan berputar mengelilingi matahari dan bumi, serta planet-planet lain semuanya berputar mengelilingi matahari. Tapi, seperti halnya para pendahulunya, dia membuat perhitungan yang serampangan mengenai skala peredaran planet mengelilingi matahari. Juga, dia membuat kekeliruan besar karena dia yakin betul bahwa orbit mengandung lingkaran-lingkaran. Jadi, bukan saja teori ini ruwet secara matematik, tapi juga tidak betul. Meski begitu, bukunya lekas mendapat perhatian besar. Para astronom lain pun tergugah, terutama astronom berkebangsaan Denmark, Tycho Brahe, yang melakukan pengamatan lebih teliti dan tepat terhadap gerakan-gerakan planet. Dari data-data hasil pengamatan inilah yang membikin Johannes Kepler akhirnya mampu merumuskan hukum-hukum gerak planet yang tepat.

Meski Aristarchus lebih dari tujuh belas abad lamanya sebelum Copernicus sudah mengemukakan persoalan-persoalan menyangkut hipotesa peredaran benda-benda langit, adalah layak menganggap Copernicuslah orang yang memperoleh penghargaan besar. Sebab, betapapun Aristarchus sudah mengedepankan pelbagai masalah yang mengandung inspirasi, namun dia tak pernah merumuskan teori yang cukup terperinci sehingga punya manfaat dari kacamata ilmiah. Tatkala Copernicus menggarap perhitungan matematik hipotesa-hipotesa secara terperinci, dia berhasil mengubahnya menjadi teori ilmiah yang punya arti dan guna. Dapat digunakan untuk dugaan-dugaan, dapat dibuktikan dengan pengamatan astronomis, dapat bermanfaat di banding lain-lain teori yang terdahulu bahwa dunialah yang jadi sentral ruang angkasa.
Jelaslah dengan demikian, teori Copernicus telah merevolusionerkan konsep kita tentang angkasa luar dan sekaligus sudah merombak pandangan filosofis kita. Namun, dalam hal penilaian mengenai arti penting Copernicus, haruslah diingat bahwa astronomi tidaklah mempunyai jangkauan jauh dalam penggunaan praktis sehari-hari seperti halnya fisika kimia dan biologi. Sebab, hakekatnya orang bisa membikin peralatan televisi, mobil, atau pabrik kimia modern tanpa mesti secuwil pun menggunakan teori Copernicus. (Sebaliknya, orang tidak bakal bisa membikin benda-benda itu tanpa menggunakan buah pikiran Faraday, Maxwell, Lavosier atau Newton).
Tetapi, jika semata-mata kita mengarahkan perhatian hanya semata-mata kepada pengaruh langsung Copernicus di bidang teknologi, kita akan kehilangan arti penting Copernicus yang sesungguhnya. Buku Copernicus punya makna yang tampaknya tak memungkinkan baik Galileo maupun Kepler menyelesaikan kerja ilmiahnya. Kesemua mereka adalah pendahulu-pendahulu yang penting dan menentukan bagi Newton, dan penemuan merekalah yang membikin kemungkinan bagi Newton merumuskan hukum-hukum gerak dan gaya beratnya. Secara historis, penerbitan De Revolutionobus Orbium Coelestium merupakan titik tolak astronomi modern. Lebih dari itu, merupakan titik tolak pengetahuan modern.
KESIMPULAN
Astronom (ahli perbintangan) berkebangsaan Polandia yang bernama Nicolaus Copernicus (nama Polandianya: Mikolaj Kopernik), dilahirkan tahun 1473 di kota Torun di tepi sungai Vistula, Polandia. Dia berasal dari keluarga berada. Sebagai anak muda belia, Copernicus belajar di Universitas Cracow, selaku murid yang menaruh minat besar terhadap ihwal ilmu perbintangan. Pada usia dua puluhan dia pergi melawat ke Italia, belajar kedokteran dan hukum di Universitas Bologna dan Padua yang kemudian dapat gelar Doktor dalam hukum gerejani dari Universitas Ferrara. Copernicus menghabiskan sebagian besar waktunya tatkala dewasa selaku staf pegawai Katedral di Frauenburg (istilah Polandia: Frombork), selaku ahli hukum gerejani yang sesungguhnya Copernicus tak pernah jadi astronom profesional, kerja besarnya yang membikin namanya melangit hanyalah berkat kerja sambilan.
Selama berada di Italia, Copernicus sudah berkenalan dengan ide-ide filosof Yunani Aristarchus dari Samos (abad ke-13 SM). Filosof ini berpendapat bahwa bumi dan planit-planit lain berputar mengitari matahari. Copernicus jadi yakin atas kebenaran hipotesa “heliocentris” ini, dan tatkala dia menginjak usia empat puluh tahun dia mulai mengedarkan buah tulisannya diantara teman-temannya dalam bentuk tulisan-tulisan ringkas, mengedepankan cikal bakal gagasannya sendiri tentang masalah itu. Copernicus memerlukan waktu bertahun-tahun melakukan pengamatan, perhitungan cermat yang diperlukan untuk penyusunan buku besarnya De Revolutionibus Orbium Coelestium (Tentang Revolusi Bulatan Benda-benda Langit), yang melukiskan teorinya secara terperinci dan mengedepankan pembuktian-pembuktiannya.
2.     SIR ISAAC NEWTON FRS 1643 – 1727
SIAPA yang tak kenal Isaac Newton FRS? Dialah ilmuwan Inggris yang paling dikenal setiap pelajar dari sekolah dasar hingga menengah di seluruh dunia. Tahukah Anda, Sir Isaac Newton FRS dilahirkan di Woolsthorpe-by-Colsterworth, Lincolnshire, 4 Januari 1643.
Dia meninggal 31 Maret 1727 dalam usia 84 tahun. Dia seorang fisikawan, matematikawan, ahli astronomi, filsuf alam, alkimiwan, dan teolog yang berasal dari Inggris.
Ia merupakan pengikut aliran heliosentris dan ilmuwan yang sangat berpengaruh sepanjang sejarah, bahkan dikatakan sebagai bapak ilmu fisika klasik. Karya bukunya "Philosophiæ Naturalis Principia Mathematica" yang diterbitkan pada tahun 1687 dianggap sebagai buku paling berpengaruh sepanjang sejarah sains. Buku ini meletakkan dasar-dasar mekanika klasik.
Dalam karyanya ini, Newton menjabarkan hukum gravitasi dan tiga hukum gerak yang mendominasi pandangan sains mengenai alam semesta selama tiga abad. Newton berhasil menunjukkan bahwa gerak benda di Bumi dan benda-benda luar angkasa lainnya diatur oleh sekumpulan hukum-hukum alam yang sama. Ia membuktikannya dengan menunjukkan konsistensi antara hukum gerak planet Kepler dengan teori gravitasinya. Karyanya ini akhirnya menyirnakan keraguan para ilmuwan akan heliosentrisme dan memajukan revolusi ilmiah.
Dalam bidang mekanika, catat Wikipedia, Newton mencetuskan adanya prinsip kekekalan momentum dan momentum sudut. Dalam bidang optika, ia berhasil membangun teleskop refleksi yang pertama dan mengembangkan teori warna berdasarkan pengamatan bahwa sebuah kaca prisma akan membagi cahaya putih menjadi warna-warna lainnya. Ia juga merumuskan hukum pendinginan dan mempelajari kecepatan suara.
Dalam bidang matematika pula, bersama dengan karya Gottfried Leibniz yang dilakukan secara terpisah, Newton mengembangkan kalkulus diferensial dan kalkulus integral. Ia juga berhasil menjabarkan teori binomial, mengembangkan "metode Newton" untuk melakukan pendekatan terhadap nilai nol suatu fungsi, dan berkontribusi terhadap kajian deret pangkat.
Sampai sekarang pun Newton masih sangat berpengaruh di kalangan ilmuwan. Sebuah survei tahun 2005 yang menanyai para ilmuwan dan masyarakat umum di Royal Society mengenai siapakah yang memberikan kontribusi lebih besar dalam sains, apakah Newton atau Albert Einstein, menunjukkan bahwa Newton dianggap memberikan kontribusi yang lebih besar.
KESIMPULAN
Sir Isaac Newton FRS dilahirkan di Woolsthorpe-by-Colsterworth, Lincolnshire, 4 Januari 1643. Dia meninggal 31 Maret 1727 dalam usia 84 tahun. Dia seorang fisikawan, matematikawan, ahli astronomi, filsuf alam, alkimiwan, dan teolog yang berasal dari Inggris.
Ia merupakan pengikut aliran heliosentris dan ilmuwan yang sangat berpengaruh sepanjang sejarah, bahkan dikatakan sebagai bapak ilmu fisika klasik. Karya bukunya "Philosophiæ Naturalis Principia Mathematica" yang diterbitkan pada tahun 1687 dianggap sebagai buku paling berpengaruh sepanjang sejarah sains. Buku ini meletakkan dasar-dasar mekanika klasik.
Dalam karyanya ini, Newton menjabarkan hukum gravitasi dan tiga hukum gerak yang mendominasi pandangan sains mengenai alam semesta selama tiga abad.
3.    GALILEO GALILEI 1564 - 1642
Galileo Galilei dilahirkan di Pisa, Tuscany, Italia, pada tanggal 15 Februari 1564. Sebagai seorang matematikawan, ayahnya berharap Galileo menjadi seorang dokter gaji dokter sangat besar dibandingkan dengan matematikawan. Mengikuti kehendak ayahnya, Galileo masuk jurusan kedokteran, Universitas Pisa. Karena merasa bosan dengan ilmu kedokteran, Galileo mempelajari matematika pada seorang guru di istana Tuscana, yakni Ostillo Ricci. Ketika berusia 21 tahun, Galileo berhenti kuliah karena kekurangan biaya. Ketika keluar, ia ditawarkan untuk mengajar matematika pada Universitas Pisa. Selanjutnya, Galileo pindah ke Universitas Padua tahun 1592 untuk mengajar astronomi, geometri dan mekanika sampai tahun 1960. pada massa ini ia menghasilkan beberapa penemuan penting.
Sumbangan penting Galileo berkaitan dengan bidang mekanika. Pada waktu itu berkembang gagasan Aristoteles yang menyatakan bahwa benda yang lebih berat jatuh lebih cepat dibandingkan dengan benda yang lebih ringan. Galileo memutuskan untuk melakukan percobaan dengan menjatuhkan berbagai benda yang berbeda ukuran maupun massanya dari menara pisa (Italia). Hasil percobaannya menunjukan bahwa gagasan Aristoteles salah. Selengkapnya dapat anda pelejari pada pokok bahasan Gerak Jatuh Bebas. Penemuan Galileo lainnya adalah Hukum Kelembaman. Sebelumnya orang percaya bahwa benda yang bergerak cenderung melambat dan akhirnya berhenti jika tidak ada tenaga yang memberikan kekuatan kepada benda tersebut untuk bergerak. Percobaan-percobaan yang dilakukan oleh Galileo membuktikan bahwa gagasan tersebuut keliru. Jika gaya gesek yang menjadi penyebab benda yang bergerak melambat dan akhirnya berhenti, dihilangkan, maka benda cenderung bergerak lurus dengan laju tetap. Selain gagasan Aristoteles di atas, pemikiran Galileo ini menjadi salah satu dasar perumusan Hukum Newton tentang gerak.
Penemuan Galileo yang terkenal lainnya adalah pada bidang astronomi. Pada waktu itu ilmu astronomi sedang berada dalam masa peralihan, dari anggapan lama yang mengatakan bahwa bumi sebagai pusat tata surya menuju gagasan bahwa pusat tata surya adalah matahari. Gagasan ii dikemukan oleh copernicus, yang kemudian disempurnakan oleh Kepler. Selengkapnya dapat anda pelajari pada Hukum Kepler. Galileo mendengar bahwa telah ditemukan teleskop di Belanda. Karena didorong oleh kehendak yang kuat untuk membuktikan kebenaran gagasan Copernicus, Galileo menyempurnakan teleskop dan menjadi orang pertama yang mengamati langit menggunakan teleskop. Sekitar tahun 1609, Galileo menyatakan bahwa gagasan Copernicus benar. Karena mendukung gagasan copernicus, maka pihak gereja katolik mengecam gagasan galileo mengenai pergerakan bumi dan melarangnya mendukung gagasan copernicus. Gereja sempat memberikan hukuman tahanan rumah kepada Galileo. Galileo meninggal dunia pada tahun 1642.
Sumbangan yang sangat penting dari Galileo bagi perkembangan ilmu pengetahuan adalah metodologi ilmu pengetahuan. Galileo menetapkan fenomena dan melakukan pengamatan secara kuantitatif. Penetapan yang cermat terhadap perhitungan secara kuantitatif sejak saat itu menjadi dasar penyelidikan ilmu pengetahuan hingga saat ini.
Pada tahun 1612, muncul penolakan terhadap teori Copernicus, sebuah yang mengatakan bahwa matahari sebagai pusat tata surya. Teori tersebut didukung juga oleh Galileo. Pihak gereja melarangnya mendukung dan mengajar teori Copernicus.
KESIMPULAN
Galileo Galilei dilahirkan di Pisa, Tuscany, Italia, pada tanggal 15 Februari 1564. Sebagai seorang matematikawan, ayahnya berharap Galileo menjadi seorang dokter gaji dokter sangat besar dibandingkan dengan matematikawan. Mengikuti kehendak ayahnya, Galileo masuk jurusan kedokteran, Universitas Pisa. Karena merasa bosan dengan ilmu kedokteran, Galileo mempelajari matematika pada seorang guru di istana Tuscana, yakni Ostillo Ricci. Ketika berusia 21 tahun, Galileo berhenti kuliah karena kekurangan biaya. Ketika keluar, ia ditawarkan untuk mengajar matematika pada Universitas Pisa. Selanjutnya, Galileo pindah ke Universitas Padua tahun 1592 untuk mengajar astronomi, geometri dan mekanika sampai tahun 1960. pada massa ini ia menghasilkan beberapa penemuan penting.
Sumbangan penting Galileo berkaitan dengan bidang mekanika. Penemuan Galileo lainnya adalah Hukum Kelembaman. Penemuan Galileo yang terkenal lainnya adalah pada bidang astronomi. Galileo menyempurnakan teleskop dan menjadi orang pertama yang mengamati langit menggunakan teleskop. Sekitar tahun 1609, Galileo menyatakan bahwa gagasan Copernicus benar. Karena mendukung gagasan copernicus, maka pihak gereja katolik mengecam gagasan galileo mengenai pergerakan bumi dan melarangnya mendukung gagasan copernicus. Gereja sempat memberikan hukuman tahanan rumah kepada Galileo. Galileo meninggal dunia pada tahun 1642.
Sumbangan yang sangat penting dari Galileo bagi perkembangan ilmu pengetahuan adalah metodologi ilmu pengetahuan. Galileo menetapkan fenomena dan melakukan pengamatan secara kuantitatif. Penetapan yang cermat terhadap perhitungan secara kuantitatif sejak saat itu menjadi dasar penyelidikan ilmu pengetahuan hingga saat ini.
4.    LEONHARD EULER 1707-1783
Di abad ke-17 Swiss punya seorang matematikus dan ahli fisika yang teramat brilian dan ilmuwan terkemuka sepanjang masa. Orang itu Leonhard Euler. Hasil karyanya mempengaruhi penggunaan semua bidang fisika dan di banyak bidang rekayasa.
Hasil matematika dan ilmiah Euler betul-betul tak masuk akal. Dia menulis 32 buku lengkap, banyak diantaranya terdiri dari dua jilid, beratus-ratus artikel tentang matematika dan ilmu pengetahuan. Orang bilang, kumpulan tulisan-tulisan ilmiahnya terdiri dari lebih 70 jilid! Kegeniusan Euler memperkaya hampir segala segi matematika murni maupun matematika siap pakai, dan sumbangannya terhadap matematika fisika hampir tak ada batasnya untuk penggunaan.
Euler khusus ahli mendemonstrasikan bagaimana hukum-hukum umum mekanika, yang telah dirumuskan di abad sebelumnya oleh Isaac Newton, dapat digunakan dalam jenis situasi fisika tertentu yang terjadi berulang kali. Misalnya, dengan menggunakan hukum Newton dalam hal gerak cairan, Euler sanggup mengembangkan persamaan hydrodinamika. Juga, melalui analisa yang cermat tentang kemungkinan gerak dari barang yang kekar, dan dengan penggunaan prinsip-prinsip Newton. Dan Euler berkemampuan mengembangkan sejumlah pendapat yang sepenuhnya menentukan gerak dari barang kekar. Dalam praktek, tentu saja, obyek benda tidak selamanya mesti kekar. Karena itu, Euler juga membuat sumbangan penting tentang teori elastisitas yang menjabarkan bagaimana benda padat dapat berubah bentuk lewat penggunaan tenaga luar.
Euler juga menggunakan bakatnya dalam hal analisa matematika tentang permasalahan astronomi, khusus menyangkut soal "tiga-badan" yang berkaitan dengan masalah bagaimana matahari, bumi, dan bulan bergerak di bawah gaya berat mereka masing-masing yang sama. Masalah ini --suatu masalah yang jadi pemikiran untuk abad ke-21-- belum sepenuhnya terpecahkan. Kebetulan, Euler satu-satunya ilmuwan terkemuka dari abad ke-18 yang (secara tepat, seperti belakangan terbukti) mendukung teori gelombang cahaya.
Buah pikiran Euler yang berhamburan tak hentinya itu sering menghasilkan titik tolak buat penemuan matematika yang bisa membuat seseorang masyhur. Misalnya, Joseph Louis Lagrange, ahli fisika matematika Perancis, berhasil merumuskan serentetan rumus ("rumus Lagrange") yang punya makna teoritis penting dan dapat digunakan memecahkan pelbagai masalah mekanika. Rumus dasarnya diketemukan oleh Euler, karena itu sering disebut rumus Euler-Lagrange. Matematikus Perancis lainnya, Jean Baptiste Fourier, umumnya dianggap berjasa dengan penemuan teknik matematikanya, terkenal dengan julukan analisa Fourier. Di sini pun, rumus dasarnya pertama diketemukan oleh Leonhard Euler, dan dikenal dengan julukan formula Euler- Fourier. Mereka menemukan penggunaan yang luas dan beraneka macam di bidang fisika, termasuk akustik dan teori elektromagnetik.
Dalam urusan matematika, Euler khusus tertarik di bidang kalkulus, rumus diferensial, dan ketidakterbatasan suatu jumlah. Sumbangannya dalam bidang ini, kendati amat penting, terlampau teknis dipaparkan di sini. Sumbangannya di bidang variasi kalkulus dan terhadap teori tentang kekompleksan jumlah merupakan dasar dari semua perkembangan berikutnya di bidang ini. Kedua topik itu punya jangkauan luas dalam bidang penggunaan kerja praktek ilmiah, sebagai tambahan arti penting di bidang matematika murni.
Formula Euler, , menunjukkan adanya hubungan antara fungsi trigonometrik dan jumlah imaginer, dan dapat digunakan menemukan logaritma tentang jumlah negatif. Ini merupakan satu dari formula yang paling luas digunakan dalam semua bidang matematika. Euler juga menulis sebuah textbook tentang geometri analitis dan membuat sumbangan penting dalam bidang geometri diferensial dan geometri biasa.
Kendati Euler punya kesanggupan yang hebat untuk penemuan-penemuan matematika yang memungkinkannya melakukan praktek-praktek ilmiah, dia hampir punya kelebihan setara dalam bidang matematika murni. Malangnya, sumbangannya yang begitu banyak di bidang teori jumlah, tetapi tidak begitu banyak yang bisa dipaparkan di sini. Euler juga orang pemula yang bekerja di bidang topologi, sebuah cabang matematika yang punya arti penting di abad ke-20.
Akhirnya, Euler memberi sumbangan penting buat sistem lambang jumlah matematik masa kini. Misalnya, dia bertanggung jawab untuk penggunaan umum huruf Yunani untuk menerangkan rasio antara keliling lingkaran terhadap diameternya. Dia juga memperkenalkan banyak sistem tanda yang cocok yang kini umum dipakai di bidang matematika.
Euler lahir tahun 1707 di Basel, Swiss. Dia diterima masuk Universitas Basel tahun 1720 tatkala umurnya baru mencapai tiga belas tahun. Mula-mula dia belajar teologi, tetapi segera pindah ke mata pelajaran matematika. Dia peroleh gelar sarjana dari Universitas Basel pada umur tujuh belas tahun dan tatkala umurnya baru dua puluh tahun dia terima undangan dari Catherine I dari Rusia untuk bergabung dalam Akademi Ilmu Pengetahuan di St. Petersburg. Di umur dua puluh tiga tahun dia jadi mahaguru fisika di sana dan ketika umurnya dua puluh enam tahun dia menggantikan korsi ketua matematika yang tadinya diduduki oleh seorang matematikus masyhur Daniel Bernoulli. Dua tahun kemudian penglihatan matanya hilang sebelah, namun dia meneruskan kerja dengan kapasitas penuh, menghasilkan artikel-artikel yang brilian.
Tahun 1741 Frederick Yang Agung dari Prusia membujuk Euler agar meninggalkan Rusia dan memintanya bergabung ke dalam Akademi Ilmu Pengetahuan di Berlin. Dia tinggal di Berlin selama dua puluh lima tahun dan kembali ke Rusia tahun 1766. Tak lama sesudah itu kedua matanya tak bisa melihat lagi. Bahkan dalam keadaan tertimpa musibah macam ini, tidaklah menghentikan penyelidikannya. Euler memiliki kemampuan spektakuler dalam hal mental aritmatika, dan hingga dia tutup usia (tahun 1783 di St. Petersburg --kini bernama Leningrad-- pada umur tujuh puluh enam tahun), dia terus mengeluarkan kertas kerja kelas tinggi di bidang matematika. Euler kawin dua kali dan punya tiga belas anak, delapan diantaranya mati muda.
Semua penemuan Euler bisa saja dibuat orang bahkan andaikata dia tidak pernah hidup di dunia ini. Meskipun saya pikir, kriteria yang layak digunakan dalam masalah ini adalah mengajukan pertanyaan-pertanyaan: apa yang akan terjadi pada dunia modern apabila dia tidak pernah berbuat apa-apa? Dalam kaitan dengan Leonhard Euler jawabnya tampak jelas sekali: pengetahuan modern dan teknologi akan jauh tertinggal di belakang, hampir tak terbayangkan, tanpa adanya formula Euler, rumus-rumusnya, dan metodenya. Sekilas pandangan melirik indeks textbook matematika dan fisika akan menunjukkan penjelasan-penjelasan ini sudut Euler (gerak benda keras); kemantapan Euler (deret tak terbatas); keseimbangan Euler (hydrodinamika); keseimbangan gerak Euler (dinamika benda keras); formula Euler (variabel kompleks); penjumlahan Euler (rentetan tak ada batasnya), curve polygonal Eurel (keseimbangan diferensial); pendapat Euler tentang keragaman fungsi (keseimbangan diferensial sebagian); transformasi Euler (rentetan tak terbatas); hukum Bernoulli-Euler (teori elastisitis); formula Euler-Fourier (rangkaian trigonometris); keseimbangan Euler-Lagrange (variasi kalkulus, mekanika); dan formula Euler-Maclaurin (metode penjumlahan) itu semua menyangkut sebagian yang penting-penting saja.
Dari sudut ini, pembaca mungkin bertanya-tanya kenapa Euler tidak dapat tempat lebih tinggi dalam daftar urutan buku ini. Alasan utama ialah, meskipun dia dengan brilian dan sukses menunjukkan betapa hukum-hukum Newton dapat diterapkan, Euler tak pernah menemukan prinsip-prinsip ilmiah sendiri. Itu sebabnya mengapa tokoh-tokoh seperti Becquerel, Rontgen, dan Gregor Mendel, yang masing-masing menemukan dasar baru fenomena dan prinsip ilmiah, ditempatkan di urutan lebih atas ketimbang Euler. Tetapi, bagaimanapun juga, sumbangan Euler terhadap, dunia ilmu, terhadap bidang rekayasa dan matematika, bukan alang kepalang besarnya.
KESIMPULAN
Di abad ke-17 Swiss punya seorang matematikus dan ahli fisika yang teramat brilian dan ilmuwan terkemuka sepanjang masa. Orang itu Leonhard Euler. Hasil karyanya mempengaruhi penggunaan semua bidang fisika dan di banyak bidang rekayasa.
Dia menulis 32 buku lengkap, banyak diantaranya terdiri dari dua jilid, beratus-ratus artikel tentang matematika dan ilmu pengetahuan. Orang bilang, kumpulan tulisan-tulisan ilmiahnya terdiri dari lebih 70 jilid. Kegeniusan Euler memperkaya hampir segala segi matematika murni maupun matematika siap pakai, dan sumbangannya terhadap matematika fisika hampir tak ada batasnya untuk penggunaan.
Euler khusus ahli mendemonstrasikan bagaimana hukum-hukum umum mekanika, yang telah dirumuskan di abad sebelumnya oleh Isaac Newton, dapat digunakan dalam jenis situasi fisika tertentu yang terjadi berulang kali.
Euler juga menggunakan bakatnya dalam hal analisa matematika tentang permasalahan astronomi, khusus menyangkut soal "tiga-badan" yang berkaitan dengan masalah bagaimana matahari, bumi, dan bulan bergerak di bawah gaya berat mereka masing-masing yang sama.
5.    MAX PLANCK 1858 – 1947
Bulannya Desember, tahunnya 1900. Dunia ilmu terperanjat dan terlompat dari tempat duduknya. Apa yang terjadi? Seorang ahli fisika Jerman, Max Planck, umumkan dia punya hipotesa yang berani. Dia bilang radiant energi (energi gelombang cahaya) tidaklah mengalir dalam arus yang kontinyu, tetapi terdiri dari potongan-potongan yang disebutnya quanta. Hipotesa Planck yang bertentangan dengan teori klasik tentang cahaya dan elektro magnetik ini merupakan titik mula dari teori kuantum yang sejak itu merevolusionerkan bidang fisika dan menyuguhkan kita pengertian yang lebih mendalam tentang alam benda dan radiasi.
Dilahirkan tahun 1858 di kota Kiel, Jerman, dia belajar di Universitas Berlin dan Munich, peroleh gelar Doktor dalam ilmu fisika dengan summa cum laude dari Universitas Munich selagi berumur baru dua puluh satu tahun. Sebentar dia mengajar di Universitas Munich, kemudian di Universitas Kiel. Di tahun 1889 dia jadi mahaguru Univeristas Berlin sampai pensiunnya tiba tatkala usianya mencapai tujuh puluh. Itu tahun 1928.

Planck, seperti halnya ilmuwan lain, tertarik dengan “radiasi kuantitas gelap,” julukan buat radiasi elektromagnetik dikeluarkan oleh obyek gelap sempurna apabila dipanaskan. (Suatu obyek gelap sempurna dijelaskan sebagai sesuatu yang tidak memantulkan cahaya, tetapi sepenuhnya menyerap semua cahaya yang jatuh di atasnya). Percobaan-percobaan para ahli fisika telah membuat ukuran yang hati-hati perihal radiasi yang dikeluarkan oleh obyek itu bahkan sebelum Planck bekerja dalam masalah itu. Hasil karya Planck pertama adalah penemuannya dalam hal formula secara aljabar yang ruwet yang dengan tepat menggambarkan “radiasi kuantitas gelap.” Formula ini yang kerap digunakan dalam teori fisika sekarang dengan rapi meringkas data-data percobaan. Tetapi ada satu masalah: hukum fisika yang sudah diterima meramalkan adanya suatu formula yang samasekali berbeda.
Planck berkecimpung dalam-dalam terhadap soal ini dan akhirnya tampil dengan teori baru yang radikal: energi radiant cuma keluar pada pergandaan yang tepat dari unit elementer yang disebut Planck “kuantum”. Menurut teori Planck, ukuran kuantum cahaya tergantung pada frekuensi cahaya (misalnya pada warnanya), dan juga berimbang dengan kuantitas fisik yang oleh Planck diringkas dengan “h”, tetapi sekarang disebut “patokan Planck.” Hipotesa Planck amatlah berlawanan dengan apa yang jadi konsep umum fisika. Tetapi, dengan penggunaan ini dia mampu menemukan keaslian teoritis yang tepat daripada formula yang benar tentang “radiasi kuantitas gelap.”
Teori Planck begitu revolusioner, yang tak syak lagi bisa dianggap suatu gagasan eksentrik kalau saja Planck bukan seorang ahli fisika yang mantap dan konservatif. Kendati hipotesanya terdengar aneh, dalam soal khusus ini jelas merupakan penuntun ke arah formula yang benar.
Pada mulanya, umumnya ahli fisika (termasuk Planck sendiri) melihat hipotesanya sebagai tak lain dari sebuah fiksi matematik yang cocok. Sesudah beberapa tahun, hal itu berubah sehingga konsepsi Planck tentang kuantum dapat digunakan untuk pelbagai fenomena fisik selain untuk “radiasi kuantitas gelap.” Einstein menggunakan konsep ini di tahun 1905 dalam rangka menjelaskan efek fotoelektrika, dan Niels Bohr menggunakannya di tahun 1913 dalam teorinya tentang struktur atom. Menjelang tahun 1918 tatkala Planck peroleh Hadiah Nobel, jelaslah sudah bahwa hipotesanya pada dasarnya benar dan itu mempunyai arti penting yang fundamental dalam teori fisika.
Sikap anti Nazi Planck yang keras membuat kedudukannya berabe di masa pemerintahan Hitler. Anak laki-lakinya dihukum mati di awal tahun 1945 akibat peranannya dalam komplotan para perwira yang punya rencana membunuh Hitler. Planck sendiri mati tahun 1947, pada umur delapan puluh sembilan tahun.
Perkembangan mekanika kuantum mungkin yang paling penting dari perkembangan ilmu pengetahuan dalam abad ke-20, lebih penting ketimbang teori relativitas Einstein. Patokan “h” Planck memegang peranan penting dalam teori fisika dan sekarang dihimpun jadi dua atau tiga patokan fisika paling dasar. Patokan itu muncul dalam teori struktur atom, dalam prinsip “ketidakpastian” Heisenberg, dalam teori radiasi dan dalam banyak lagi formula ilmiah. Perkiraan pertama Planck mengenai nilai jumlah adalah dalam batas perhitungan 2% yang diterima sekarang.
Planck umumnya dianggap bapak mekanika kuantum. Kendati dia memainkan peranan tak seberapa dalam perkembangan teori selanjutnya, adalah keliru mengecilkan arti Planck. Jalan mula yang disuguhkannya sungguh penting. Dia membebaskan pikiran orang dari anggapan-anggapan keliru yang ada sebelumnya, dan dia memungkinkan orang-orang sesudahnya menyusun teori yang jauh lebih jernih daripada yang sekarang kita miliki.
KESIMPULAN
Bulannya Desember, tahunnya 1900. Seorang ahli fisika Jerman, Max Planck, umumkan hipotesa yaitu radiant energi (energi gelombang cahaya) tidaklah mengalir dalam arus yang kontinyu, tetapi terdiri dari potongan-potongan yang disebutnya quanta. Hipotesa Planck yang bertentangan dengan teori klasik tentang cahaya dan elektro magnetik ini merupakan titik mula dari teori kuantum yang sejak itu merevolusionerkan bidang fisika dan menyuguhkan kita pengertian yang lebih mendalam tentang alam benda dan radiasi.
Dilahirkan tahun 1858 di kota Kiel, Jerman, dia belajar di Universitas Berlin dan Munich, peroleh gelar Doktor dalam ilmu fisika dengan summa cum laude dari Universitas Munich selagi berumur baru dua puluh satu tahun. Sebentar dia mengajar di Universitas Munich, kemudian di Universitas Kiel. Di tahun 1889 dia jadi mahaguru Univeristas Berlin sampai pensiunnya tiba tatkala usianya mencapai tujuh puluh.
6.    ALBERT EINSTEIN 1879–1955
Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan "pengabdiannya bagi Fisika Teoretis".
Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia.
Pada tahun 1999, Einstein dinamakan "Tokoh Abad Ini" oleh majalah Time. Kepopulerannya juga membuat nama "Einstein" digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya "Albert Einstein" didaftarkan sebagai merk dagang.
Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.
Biografi
a.      Masa Muda dan Universitas
Einstein dilahirkan di Ulm di Württemberg, Jerman; sekitar 100 km sebelah timur Stuttgart. Bapaknya bernama Hermann Einstein, seorang penjual ranjang bulu yang kemudian menjalani pekerjaan elektrokimia, dan ibunya bernama Pauline. Mereka menikah di Stuttgart-Bad Cannstatt. Keluarga mereka keturunan Yahudi; Albert disekolahkan di sekolah Katholik dan atas keinginan ibunya dia diberi pelajaran biola.
Pada umur lima tahun, ayahnya menunjukkan kompas kantung, dan Einstein menyadari bahwa sesuatu di ruang yang "kosong" ini beraksi terhadap jarum di kompas tersebut; dia kemudian menjelaskan pengalamannya ini sebagai salah satu saat yang paling menggugah dalam hidupnya. Meskipun dia membuat model dan alat mekanik sebagai hobi, dia dianggap sebagai pelajar yang lambat, kemungkinan disebabkan oleh dyslexia, sifat pemalu, atau karena struktur yang jarang dan tidak biasa pada otaknya (diteliti setelah kematiannya). Dia kemudian diberikan penghargaan untuk teori relativitasnya karena kelambatannya ini, dan berkata dengan berpikir dalam tentang ruang dan waktu dari anak-anak lainnya, dia mampu mengembangkan kepandaian yang lebih berkembang. Pendapat lainnya, berkembang belakangan ini, tentang perkembangan mentalnya adalah dia menderita Sindrom Asperger, sebuah kondisi yang berhubungan dengan autisme.
Einstein mulai belajar matematika pada umur dua belas tahun. Ada gosip bahwa dia gagal dalam matematika dalam jenjang pendidikannya, tetapi ini tidak benar; penggantian dalam penilaian membuat bingung pada tahun berikutnya. Dua pamannya membantu mengembangkan ketertarikannya terhadap dunia intelek pada masa akhir kanak-kanaknya dan awal remaja dengan memberikan usulan dan buku tentang sains dan matematika.
Pada tahun 1894, dikarenakan kegagalan bisnis elektrokimia ayahnya, Einstein pindah dari Munich ke Pavia, Italia (dekat kota Milan). Albert tetap tinggal untuk menyelesaikan sekolah, menyelesaikan satu semester sebelum bergabung kembali dengan keluarganya di Pavia.
Kegagalannya dalam seni liberal dalam tes masuk Eidgenössische Technische Hochschule (Institut Teknologi Swiss Federal, di Zurich) pada tahun berikutnya adalah sebuah langkah mundur dia oleh keluarganya dikirim ke Aarau, Swiss, untuk menyelesaikan sekolah menengahnya, di mana dia menerima diploma pada tahun 1896, Einstein beberapa kali mendaftar di Eidgenössische Technische Hochschule. Pada tahun berikutnya dia melepas kewarganegaraan Württemberg, dan menjadi tak bekewarganegaraan.
Pada 1898, Einstein menemui dan jatuh cinta kepada Mileva Marić, seorang Serbia yang merupakan teman kelasnya (juga teman Nikola Tesla). Pada tahun 1900, dia diberikan gelar untuk mengajar oleh Eidgenössische Technische Hochschule dan diterima sebagai warga negar Swiss pada 1901. Selama masa ini Einstein mendiskusikan ketertarikannya terhadap sains kepada teman-teman dekatnya, termasuk Mileva. Dia dan Mileva memiliki seorang putri bernama Lieserl, lahir dalam bulan Januari tahun 1902. Lieserl Einstein, pada waktu itu, dianggap tidak legal karena orang tuanya tidak menikah.
b.      Kerja dan Gelar Doktor
Pada saat kelulusannya Einstein tidak dapat menemukan pekerjaan mengajar, keterburuannya sebagai orang muda yang mudah membuat marah professornya. Ayah seorang teman kelas menolongnya mendapatkan pekerjaan sebagai asisten teknik pemeriksa di Kantor Paten Swiss pada tahun 1902. Di sana, Einstein menilai aplikasi paten penemu untuk alat yang memerlukan pengetahuan fisika. Dia juga belajar menyadari pentingnya aplikasi dibanding dengan penjelasan yang buruk, dan belajar dari direktur bagaimana "menjelaskan dirinya secara benar". Dia kadang-kadang membetulkan desain mereka dan juga mengevaluasi kepraktisan hasil kerja mereka.
Einstein menikahi Mileva pada 6 Januari 1903. Pernikahan Einstein dengan Mileva, seorang matematikawan. Pada 14 Mei 1904, anak pertama dari pasangan ini, Hans Albert Einstein, lahir. Pada 1904, posisi Einstein di Kantor Paten Swiss menjadi tetap. Dia mendapatkan gelar doktor setelah menyerahkan thesis "Eine neue Bestimmung der Moleküldimensionen" ("On a new determination of molecular dimensions") pada tahun 1905 dari Universitas Zürich.
Di tahun yang sama dia menulis empat artikel yang memberikan dasar fisika modern, tanpa banyak sastra sains yang dapat ia tunjuk atau banyak kolega dalam sains yang dapat ia diskusikan tentang teorinya. Banyak fisikawan setuju bahwa ketiga thesis itu (tentang gerak Brownian), efek fotolistrik, dan relativitas khusus) pantas mendapat Penghargaan Nobel. Tetapi hanya thesis tentang efek fotoelektrik yang mendapatkan penghargaan tersebut. Ini adalah sebuah ironi, bukan hanya karena Einstein lebih tahu banyak tentang relativitas, tetapi juga karena efek fotoelektrik adalah sebuah fenomena kuantum, dan Einstein menjadi terbebas dari jalan dalam teori kuantum. Yang membuat thesisnya luar biasa adalah, dalam setiap kasus, Einstein dengan yakin mengambil ide dari teori fisika ke konsekuensi logis dan berhasil menjelaskan hasil eksperimen yang membingungkan para ilmuwan selama beberapa dekade.
Dia menyerahkan thesis-thesisnya ke "Annalen der Physik". Mereka biasanya ditujukan kepada "Annus Mirabilis Papers" (dari Latin: Tahun luar biasa). Persatuan Fisika Murni dan Aplikasi (IUPAP) merencanakan untuk merayakan 100 tahun publikasi pekerjaan Einstein di tahun 1905 sebagai Tahun Fisika 2005.
c.       Gerakan Brown
Di artikel pertamanya di tahun 1905 bernama "On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid", mencakup penelitian tentang gerakan Brownian. Menggunakan teori kinetik cairan yang pada saat itu kontroversial, dia menetapkan bahwa fenomena, yang masih kurang penjelasan yang memuaskan setelah beberapa dekade setelah ia pertama kali diamati, memberikan bukti empirik (atas dasar pengamatan dan eksperimen) kenyataan pada atom. Dan juga meminjamkan keyakinan pada mekanika statistika, yang pada saat itu juga kontroversial.
Sebelum thesis ini, atom dikenal sebagai konsep yang berguna, tetapi fisikawan dan kimiawan berdebat dengan sengit apakah atom itu benar-benar suatu benda yang nyata. Diskusi statistik Einstein tentang kelakuan atom memberikan pelaku eksperimen sebuah cara untuk menghitung atom hanya dengan melihat melalui mikroskop biasa. Wilhelm Ostwald, seorang pemimpin sekolah anti-atom, kemudian memberitahu Arnold Sommerfeld bahwa ia telah berkonversi kepada penjelasan komplit Einstein tentang gerakan Brown.
KESIMPULAN
Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan "pengabdiannya bagi Fisika Teoretis".
Pada tahun 1999, Einstein dinamakan "Tokoh Abad Ini" oleh majalah Time. Kepopulerannya juga membuat nama "Einstein" digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya "Albert Einstein" didaftarkan sebagai merk dagang.
Einstein dilahirkan di Ulm di Württemberg, Jerman; sekitar 100 km sebelah timur Stuttgart. Bapaknya bernama Hermann Einstein, seorang penjual ranjang bulu yang kemudian menjalani pekerjaan elektrokimia, dan ibunya bernama Pauline. Mereka menikah di Stuttgart-Bad Cannstatt. Keluarga mereka keturunan Yahudi; Albert disekolahkan di sekolah Katholik dan atas keinginan ibunya dia diberi pelajaran biola.
Einstein mulai belajar matematika pada umur dua belas tahun. Pada tahun 1894, dikarenakan kegagalan bisnis elektrokimia ayahnya, Einstein pindah dari Munich ke Pavia, Italia (dekat kota Milan). Albert tetap tinggal untuk menyelesaikan sekolah, menyelesaikan satu semester sebelum bergabung kembali dengan keluarganya di Pavia.
Di artikel pertamanya di tahun 1905 bernama "On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid", mencakup penelitian tentang gerakan Brownian. Menggunakan teori kinetik cairan yang pada saat itu kontroversial, dia menetapkan bahwa fenomena, yang masih kurang penjelasan yang memuaskan setelah beberapa dekade setelah ia pertama kali diamati, memberikan bukti empirik (atas dasar pengamatan dan eksperimen) kenyataan pada atom. Dan juga meminjamkan keyakinan pada mekanika statistika, yang pada saat itu juga kontroversial.

7.    WERNER HEISENBERG 1901-1976

Ke tangan siapa Hadiah Nobel untuk bidang fisika jatuh di tahun 1932? Ke tangan Werner Heisenberg, ahli fisika Jerman. Tak ada orang dapat Hadiah Nobel tanpa sebab-sebab yang jelas. Dan sebab itu pun mesti luar biasa. Kalau sekedar penemu sih banyak, dan rasanya sulit hadiah itu dikantonginya. Kenapa bisa Heisenberg? Karena kreasi dan penemuannya dalam bidang "kuantum mekanika." Ini bukan barang sembarangan. Ini salah satu prestasi penting dalam seluruh sejarah ilmu pengetahuan.
Mekanika --tiap orang mafhum belaka-- adalah cabang itmu fisika yang berhubungan dengan hukum-hukum umum ihwal gerak sesuatu benda. Dan bukan cabang sembarangan cabang, melainkan cabang yang punya bobot fundamental dalam dunia ilmu pengetahuan.
Sejalan dengan kemajuan bertambah, kebutuhan pun meningkat. Yang dirasa cukup hari ini akan terasa kurang besoknya. Tak kecuali dalam hal mekanika. Pada tahun-tahun permulaan abad ke-20 sudah mulai terasa dan makin lama makin nyata betapa hukum yang berlaku di bidang mekanika tak mampu menjangkau dan memaparkan tingkah laku partikel yang teramat kecil seperti atom, apalagi partikel sub atom. Apabila hukum lama yang sudah diterima umum dapat memecahkan permasalahan dengan sempurna sepanjang menghadapi ihwal benda makroskopik (benda yang jauh lebih besar ketimbang atom) tidaklah demikian halnya jika berhadapan dengan benda yang teramat lebih kecil. Ini bukan saja membikin pusing kepala tetapi sekaligus juga teka-teki yang tak terjawab.
Di tahun 1925 Werner Heisenberg mengajukan rumus baru di bidang fisika, suatu rumus yang teramat sangat radikal, jauh berbeda dalam pokok konsep dengan rumus klasik Newton. Teori rumus baru ini --sesudah mengalami beberapa perbaikan oleh orang-orang sesudah Heisenberg--sungguh-sungguh berhasil dan cemerlang. Rumus itu hingga kini bukan cuma diterima melainkan digunakan terhadap semua sistem fisika, tak peduli yang macam apa dan dari yang ukuran bagaimanapun.
Dapat dibuktikan secara matematik, sepanjang pengamatan hanya dengan menggunakan sistem makroskopik melulu, perkiraan kuantum mekanika berbeda dengan mekanika klasik dalam jumlah yang terlampau kecil untuk diukur. (Atas dasar alasan ini, mekanika klasik --yang secara matematik lebih sederhana daripada kuanturn mekanika-- masih dapat dipakai untuk kebanyakan perhitungan ilmiah). Tetapi, bilamana berurusan dengan sistem dimensi atom, perkiraan tentang kuantum mekanika berbeda besar dengan mekanika klasik. Percobaan-percobaan membuktikan bahwa perkiraan mengenai kuantum mekanika adalah benar.
Salah satu konsekuensi dari teori Heisenberg adalah apa yang terkenal --dengan rumus "prinsip ketidakpastian" yang dirumuskannya sendiri di tahun 1927. Prinsip itu umumnya dianggap salah satu prinsip yang paling mendalam di bidang ilmiah dan paling punya daya jangkau jauh. Dalam praktek, apa yang diterapkan lewat penggunaan "prinsip ketidakpastian" ini adalah mengkhususkan batas-batas teoritis tertentu terhadap kesanggupan kita membuat ukuran-ukuran ilmiah. Akibat serta pengaruh dari sistem ini sangat dahsyat. Apabila hukum dasar fisika menghambat seorang ilmuwan --bahkan dalam keadaan yang ideal sekalipun-- mendapatkan pengetahuan yang cermat dari suatu penyelidikan, ini disebabkan karena sifat-sifat masa depan dari sistem itu tidak sepenuhnya bisa diramalkan. Menurut "prinsip ketidakpastian," tak akan ada perbaikan pada peralatan ukur kita yang akan mengijinkan kita mengungguli kesulitan, ini.
"Prinsip ketidakpastian" ini menjamin bahwa fisika, dalam keadaannya yang lumrah, tak sanggup membikin lebih dari sekedar dugaan-dugaan statistik. Seorang ilmuwan yang menyelidiki radioaktivitas, misalnya, mungkin mampu menduga bahwa satu dari setriliun atom radium, dua juta akan mengeluarkan sinar gamma dalam waktu sehari sesudahnya.
Tetapi, Heisenberg sendiri tidak bisa menaksir apakah ada atom radium yang khusus yang akan berbuat begitu. Dalam banyak hal yang praktis, ini bukannya satu pembatasan yang ketat. Bilamana menyangkut jumlah besar, metoda statistik sering mampu menyuguhkan basis pijakan yang dapat dipercaya untuk sesuatu langkah. Tetapi, jika menyangkut jumlah dari ukuran kecil, soalnya jadi lain. Di sini "prinsip ketidakpastian" memaksa kita menghindar dari gagasan sebab-akibat fisika yang ketat. Ini mengedepankan suatu perubahan yang amat mendasar dalam pokok filosofi ilmiah. Begitu mendasarnya sampai-sampai ilmuwan besar Einstein tak pernah mau terima prinsip ini. "Saya tidak percaya," suatu waktu Einstein berkata, "bahwa Tuhan main-main dengan kehancuran alam semesta."
Tetapi, ini pada hakekatnya sebuah pertanda bahwa ahli-ahli fisika yang paling modern merasa perlu menerimanya.
Jelaslah sudah, dari sudut teori kuantum, dan pada tingkat lebih lanjut bahkan lebih besar dari "teori relativitas," telah merombak konsep dasar kita tentang dunia fisik. Tetapi, konsekuensi teori ini tidaklah semata bersifat filosofis.
Diantara penggunaan praktisnya, dapat dilihat pada peralatan modern seperti mikroskop elektron, laser dan transistor. Teori kuantum juga secara luas digunakan dalam bidang fisika nuklir dan tenaga atom. Ini membentuk dasar pengetahuan kita tentang bidang "spectroscopy" (alat memprodusir dan meneliti spektra cahaya), dan ini digunakan secara luas di sektor astronomi dan kimia. Dan juga dimanfaatkan dalam penyelidikan teoritis dalam masalah yang topiknya beraneka ragam seperti kualitas khusus cairan belium, dasar susunan intern binatang-binatang, daya penambahan kekuatan magnit, dan radio aktivitas.
Werner Heisenberg lahir di Jerman tahun 1901. Dia terima gelar doktor dalam bidang fisika teoritis dari universitas Munich tahun 1923. Dari tahun 1924 sampai 1927 dia kerja di Kopenhagen bersama ahli fisika besar Denmark, Niels Bohr. Kertas kerja penting pertamanya tentang ihwal kuantum mekanika diterbitkan tahun 1925 dan rumusnya tentang "prinsip ketidakpastian" keluar tahun 1927. Heisenberg meninggal tahun 1976 dalam usia tujuh puluh empat tahun. Dia hidup bersama isteri dan tujuh anak.
Dari sudut arti penting kuantum mekanika, para pembaca mungkin heran apa sebab Heisenberg tidak ditempatkan lebih tinggi dari nomornya sekarang. Tetapi perlu diingat, Heisenberg bukanlah satu-satunya ilmuwan penting yang berhubungan dengan pengembangan kuantum mekanika. Sumbangan pikiran penting telah diberikan oleh beberapa pendahulu yang tenar seperti Max Planck, Albert Einstein, Niels Bohr, dan ilmuwan Perancis Louis Broglie. Sebaris tambahan masih bisa ditulis di sini seperti ilmuwan Austria Erwin Schrodinger, ahli Inggris P.A.M. Dirac. Semua mereka ini turut memberi sumbangan yang amat membantu bagi teori kuanturn pada tahun-tahun tak lama sesudah Heisenberg menerbitkan kertas kerjanya yang bermakna besar laksana sperma buat kesuburan ilmu pengetahuan. Namun begitu, saya pikir Heisenberg-lah tokoh yang paling utama dalam pengembangan mekanika kuantum ini dan atas dasar itulah dia layak diberi tempat urutan tinggi dalam buku ini.
KESIMPULAN
Hadiah Nobel untuk bidang fisika jatuh di tahun 1932 jatuh ke tangan Werner Heisenberg, ahli fisika Jerman. Karena kreasi dan penemuannya dalam bidang "kuantum mekanika.". Di tahun 1925 Werner Heisenberg mengajukan rumus baru di bidang fisika, suatu rumus yang teramat sangat radikal, jauh berbeda dalam pokok konsep dengan rumus klasik Newton. Salah satu konsekuensi dari teori Heisenberg adalah apa yang terkenal --dengan rumus "prinsip ketidakpastian" yang dirumuskannya sendiri di tahun 1927. Dalam praktek, apa yang diterapkan lewat penggunaan "prinsip ketidakpastian" ini adalah mengkhususkan batas-batas teoritis tertentu terhadap kesanggupan kita membuat ukuran-ukuran ilmiah.
Diantara penggunaan praktisnya, dapat dilihat pada peralatan modern seperti mikroskop elektron, laser dan transistor. Teori kuantum juga secara luas digunakan dalam bidang fisika nuklir dan tenaga atom. Ini membentuk dasar pengetahuan kita tentang bidang "spectroscopy" (alat memprodusir dan meneliti spektra cahaya), dan ini digunakan secara luas di sektor astronomi dan kimia.

8.     PAUL DIRAC  1902 – 1984

 Lebih dari seratus tahun yang lalu, tepatnya pada 8 Agustus 1902, lahirlah seorang anak yang diberi nama Paul Andrien Maurice Dirac di Bristol Inggris. Siapa sangka di kemudian hari anak yang bernama Paul Dirac ini akan menjadi fisikawan besar Inggris yang namanya dapat disejajarkan dengan Newton, Thomson, dan Maxwell. Melalui teori kuantumnya yang menjelaskan tentang elektron, Dirac menjelma menjadi fisikawan ternama di dunia dan namanya kemudian diabadikan bagi persamaan relativistik yang dikembangkannya yaitu persamaan Dirac. Tulisan ini dibuat untuk mengenang kembali perjalanan kariernya yang cemerlang dalam bidang fisika teori.
Dirac kecil tumbuh dan besar di Bristol. Ayahnya yang berasal dari Swiss bernama Charles lahir di kota Monthey dekat Geneva pada tahun 1866 dan kemudian pindah ke Bristol Inggris, untuk menjadi guru bahasa Prancis di Akademi Teknik Merchant Venturers. Ibunya bernama Florence Holten, wanita yang lahir di Liskeard pada tahun 1878 dan menjadi pustakawan di kota Bristol. Ayah dan Ibu Dirac menikah di Bristol pada tahun 1899 dan memiliki tiga orang, anak dua laki-laki (dimana Paul adalah yang lebih muda) dan seorang perempuan. Setelah menyelesaikan pendidikan SMA dan sekolah teknik, Paul Dirac melanjutkan studi di Jurusan teknik elektro Universitas Bristol pada tahun 1918 untuk belajar menjadi insinyur teknik elektro. Pilihannya ini diambil berdasarkan anjuran ayahnya yang menginginkan Paul mendapatkan pekerjaan yang baik.
Dirac menyelesaikan kuliahnya dengan baik, tetapi dia tidak mendapatkan pekerjaan yang cocok paska berkecamuknya perang dunia pada saat itu. Keinginannya adalah pergi ke Universitas Cambridge untuk meperdalam matematika dan fisika. Dia diterima di akademi St John Cambridge pada tahun 1921, tetapi hanya ditawarkan beasiswa yang tidak memadai untuk menyelesaikan kuliahnya. Untungnya dia sanggup mengambil kuliah matematika terapan di Universitas Bristol selama dua tahun tanpa harus membayar uang kuliah dan tetap dapat tinggal di rumah. Setelah itu pada tahun 1923 dia berhasil mendapatkan beasiswa penuh di akademi St John dan dana penelitian dari Departemen perindustrian dan sains, tetapi dana inipun belum bisa menutupi jumlah biaya yang diperlukan untuk kuliah di Cambridge. Pada akhirnya Paul Dirac berhasil mewujudkan keinginannya kuliah di Akademi St John karena adanya permintaan dari pihak universitas. Di Cambridge Paul Dirac mengerjakan semua pekerjaan sepanjang hidupnya sejak kuliah paska sarjananya pada tahun 1923 sampai pensiun sebagai profesor (lucasian professor) pada tahun 1969. Dirac membuktikan bahwa dirinya pantas mendapatkan beasiswa yang diberikan pihak universitas untuk kuliah di Cambridge.
Pada tanggal 20 oktober 1984 Paul Dirac meninggal dunia pada usia 82 tahun, sebagai peraih hadiah nobel fisika tahun 1933 dan anggota British order of merit tahun 1973. Paul Dirac merupakan fisikawan teoretis Inggris terbesar di abad ke-20. Pada tahun 1995 perayaan besar diselenggarakan di London untuk mengenang hasil karyanya dalam fisika. Sebuah monumen dibuat di Westminster Abbey untuk mengabadikan namanya dan hasil karyanya, di mana di sini dia bergabung bersama sejumlah monumen yang sama yang dibuat untuk Newton, Maxwell, Thomson, Green, dan fisikawan-fisikawan besar lainnya. Pada monumen itu disertakan pula Persamaan Dirac dalam bentuk relativistik yang kompak. Sebenarnya persamaan ini bukanlah persamaan yang digunakan Dirac pada saat itu, tetapi kemudian persamaan ini digunakan oleh mahasiswanya.
a.         Penemuan yang monumental
Dirac mengukuhkan teori mekanika kuantum dalam bentuk yang paling umum dan mengembangkan persamaan relativistik untuk elektron, yang sekarang dinamakan menggunakan nama beliau yaitu persamaan Dirac. Persamaan ini juga mengharuskan adanya keberadaan dari pasangan antipartikel untuk setiap partikel misalnya positron sebagai antipartikel dari elektron. Dia adalah orang pertama yang mengembangkan teori medan kuantum yang menjadi landasan bagi pengembangan seluruh teori tentang partikel subatom atau partikel elementer. Pekerjaan ini memberikan dasar bagi pemahaman kita tentang gaya-gaya alamiah. Dia mengajukan dan menyelidiki konsep kutub magnet tunggal (magnetic monopole), sebuah objek yang masih belum dapat dibuktikan keberadaannya, sebagai cara untuk memasukkan simetri yang lebih besar ke dalam persamaan medan elektromagnetik Maxwell. Paul Dirac melakukan kuantisasi medan gravitasi dan membangun teori medan kuantum umum dengan konstrain dinamis, yang memberikan landasan bagi terbentuknya Teori Gauge dan Teori Superstring, sebagai kandidat Theory Of Everything, yang berkembang sekarang. Teori-teorinya masih berpengaruh dan penting dalam perkembangan fisika hingga saat ini, dan persamaan dan konsep yang dikemukakannya menjadi bahan diskusi di kuliah-kuliah fisika teori di seluruh dunia.
Dirac bersama Heisenberg, dua orang ysng berjasa dalam pengembangan fisika kuantum
Langkah awal menuju teori kuantum baru dimulai oleh Dirac pada akhir September 1925. Saat itu, R H Fowler pembimbing risetnya menerima salinan makalah dari Werner Heisenberg berisi penjelasan dan pembuktian teori kuantum lama Bohr dan Sommerfeld, yang masih mengacu pada prinsip korespondensi Bohr tetapi berubah persamaannya sehingga teori ini mencakup secara langsung kuantitas observabel. Fowler mengirimkan makalah Heisenberg kepada Dirac yang sedang berlibur di Bristol dan menyuruhnya untuk mempelajari makalah itu secara teliti. Perhatian Dirac langsung tertuju pada hubungan matematis yang aneh, pada saat itu, yang dikemukakan oleh Heisenberg. Beberapa pekan kemudian setelah kembali ke Cambridge, Dirac tersadar bahwa bentuk matematika tersebut mempunyai bentuk yang sama dengan kurung poisson (Poisson bracket) yang terdapat dalam fisika klasik dalam pembahasan tentang dinamika klasik dari gerak partikel. Didasarkan pada pemikiran ini dengan cepat dia merumuskan ulang teori kuantum yang didasarkan pada variabel dinamis non-komut (non-comuting dinamical variables). Cara ini membawanya kepada formulasi mekanika kuantum yang lebih umum dibandingkan dengan yang telah dirumuskan oleh fisikawan yang lain.
Pekerjaan ini merupakan pencapaian terbaik yang dilakukan oleh Dirac yang menempatkannya lebih tinggi dari fisikawan lain yang pada saat itu sama-sama mengembangkan teori kuantum. Sebagai fisikawan muda yang baru berusia 25 tahun, dia cepat diterima oleh komunitas fisikawan teoretis pada masa itu. Dia diundang untuk berbicara di konferensi-konferensi yang diselenggarakan oleh komunitas fisika teori, termasuk kongres Solvay pada tahun 1927 dan tergabung sebagai anggota dengan hak-hak yang sama dengan anggota yang lain yang terdiri dari para pakar fisika ternama dari seluruh dunia.
Formulasi umum tentang teori kuantum yang dikembangkan oleh Dirac memungkinkannya untuk melangkah lebih jauh. Dengan formulasi ini, dia mampu mengembangkan teori transformasi yang dapat menghubungkan berbagai formulasi-formulasi yang berbeda dari teori kuantum. Teori tranformasi menunjukkan bahwa semua formulasi tersebut pada dasarnya memiliki konsekuensi fisis yang sama, baik dalam persamaan mekanika gelombang Schrodinger maupun mekanika matriksnya Heisenberg. Ini merupakan pencapaian yang gemilang yang membawa pada pemahaman dan kegunaan yang lebih luas dari mekanika kuantum. Teori transformasi ini merupakan puncak dari pengembangan mekanika kuantum oleh Dirac karena teori ini menyatukan berbagai versi dari mekanika kuantum, yang juga memberikan jalan bagi pengembangan mekanika kuantum selanjutnya. Di kemudian hari rumusan teori transformasi ini menjadi miliknya sebagaimana tidak ada versi mekanika kuantum yang tidak menyertainya. Bersama dengan teori transformasi, mekanika kuantum versi Dirac disajikan dalam bentuk yang sederhana dan indah, dengan struktur yang menunjukkan kepraktisan dan konsep yang elegan, namun berkaitan erat dengan teori klasik. konsep ini menunjukkan kepada kita aspek baru dari alam semesta yang belum pernah terbayangkan sebelumnya.
Karier cemerlang Dirac sesungguhnya telah tampak ketika dia masih berada di tingkat sarjana. Pada saat itu Dirac telah menyadari pentingnya teori relativitas khusus dalam fisika, suatu teori yang menjadikan Einstein terkenal pada tahun 1905, yang dipelajari Dirac dari kuliah yang dibawakan oleh C D Broad, seorang profesor filsafat di Universitas Bristol. Sebagian besar makalah yang dibuat Dirac sebagai mahasiswa paska sarjana ditujukan untuk menyajikan bentuk baru dari rumusan yang sudah ada dalam literatur menjadi rumusan yang sesuai (kompatibel) dengan relativitas khusus. Pada tahun 1927 Dirac berhasil mengembangkan teori elektron yang memenuhi kondisi yang disyaratkan oleh teori relativitas khusus dan mempublikasikan persamaan relativistik yang invarian untuk elektron pada awal tahun 1928.
Persamaan Dirac
Sebagian fisikawan lain sebenarnya memiliki pemikiran yang sama dengan apa yang dilakukan oleh Dirac, meskipun demikian belum ada yang mampu menemukan persamaan yang memenuhi seperti apa yang telah dicapai oleh Dirac. Dia memiliki argumen yang sederhana dan elegan yang didasarkan pada tujuan bahwa teori tranformasinya dapat berlaku juga dalam mekanika kuantum relativistik – sebuah argumen yang menspesifikasikan bentuk umum dari yang harus dimiliki oleh persamaan relativistik ini, sebuah argumen yang menjadi bagian yang belum terpecahkan bagi semua fisikawan. Teori tranformasinya harus memuat persamaan yang tidak hanya berupa turunan waktu, sementara asumsi relativitas mensyaratkan bahwa persamaannya harus juga dapat linier di dalam turunan ruang. Persamaan Dirac merupakan salah satu persamaan fisika yang paling indah. Profesor Sir Nevill Mott, mantan Direktur Laboratorium Cavendish, baru-baru ini menulis,”persamaan ini bagi saya adalah bagian fisika teori yang paling indah dan menantang yang pernah saya lihat sepanjang hidup saya, yang hanya bisa dibandingkan dengan kesimpulan Maxwell bahwa arus perpindahan dan juga medan elektromagnetik harus ada. Selain itu, persamaan Dirac untuk elektron membawa implikasi penting bahwa elektron harus mempunyai spin ½, dan momen magnetik eh/4pm menjadi benar dengan ketelitian mencapai 0,1%.
Persamaan Dirac dan teori elektronnya masih tetap relevan digunakan sampai sekarang. Perkiraan yang dibuatnya telah dibuktikan dalam sistem atom dan molekul. Telah ditunjukkan juga bahwa hal ini berlaku untuk partikel lain yang memiliki spin yang sama dengan elektron seperti proton, hyperon dan partikel keluarga baryon lainnya. konsep ini dapat diterapkan secara universal dan diketahui dengan baik oleh para fisikawan dan kimiawan, sesuatu yang tidak seorangpun dapat membantahnya. Melihat kenyataan ini, Dirac merasa sudah waktunya untuk menyatakan, ”teori umum mekanika kuantum sudah lengkap sekarang …… hukum-hukum fisika yang yang mendasari diperlukannya teori matematika dari bagian besar fisika dan keseluruhan bagian dari kimia telah diketahui secara lengkap.”
b.      Indahnya Fisika
Dirac menunjukkan kemudian bahwa persamaannya ini mengandung implikasi yang tidak diharapkan bagi suatu partikel. Persamaannya memperkirakan adanya antipartikel, seperti positron dan antiproton yang bermuatan negatif, yaitu suatu objek yang saat ini sudah sangat dikenal di laboratorium fisika energi tinggi. Menurut teorinya, semua partikel memiliki antipartikel tertentu yang terkait dengannya. sebagian besar dari antipartikel ini sekarang telah dibuktikan keberadaannya. Positron dan antiproton adalah sebagian kecil dari antipartikel yang sudah sangat dikenal, keduanya dapat berada dalam kondisi stabil di ruang hampa, dan saat ini digunakan secara luas dalam akselerator penumbuk partikel (collider accelerator) yang dengannya fisikawan mempelajari fenomena yang terjadi dalam fisika energi tinggi.
Dirac dan Persamaan Relativistiknya
Penting diungkapkan di sini keindahan dari persamaan Dirac. Keindahan ini bisa jadi sulit dirasakan oleh orang yang tidak terbiasa dengan rumus-rumus fisika, tetapi kenyataan ini tidak akan dibantah oleh para fisikawan. Persamaan Dirac adalah salah satu penemuan besar dalam sejarah fisika. Melalui pekerjaannya ini, Dirac memberikan prinsip-prinsip dasar yang memuaskan dalam usaha untuk memahami alam semesta kita. Melalui penemuannya ini nama Dirac akan dikenang selamanya sebagai salah satu fisikawan besar. Suatu monumen telah dibangun untuknya atas jasanya membimbing kita kepada pemahaman tentang salah satu aspek penting gaya dasar yang terkandung di alam semesta yang kita diami ini.

Nama Dirac akan dimasukkan dalam catatan sejarah fisika atas kontribusi yang diberikannya kepada dunia sains khususnya fisika berupa dasar-dasar mekanika kuantum dan teori transformasi. Penemuannya menempatkan Dirac di jajaran papan atas fisikawan teori sepanjang masa – seorang jenius yang hebat dalam sejarah fisika.
KESIMPULAN
pada 8 Agustus 1902, lahirlah seorang anak yang diberi nama Paul Andrien Maurice Dirac di Bristol Inggris. Siapa sangka di kemudian hari anak yang bernama Paul Dirac ini akan menjadi fisikawan besar Inggris yang namanya dapat disejajarkan dengan Newton, Thomson, dan Maxwell. Melalui teori kuantumnya yang menjelaskan tentang elektron, Dirac menjelma menjadi fisikawan ternama di dunia dan namanya kemudian diabadikan bagi persamaan relativistik yang dikembangkannya yaitu persamaan Dirac. Tulisan ini dibuat untuk mengenang kembali perjalanan kariernya yang cemerlang dalam bidang fisika teori.
Dirac mengukuhkan teori mekanika kuantum dalam bentuk yang paling umum dan mengembangkan persamaan relativistik untuk elektron, yang sekarang dinamakan menggunakan nama beliau yaitu persamaan Dirac. Persamaan ini juga mengharuskan adanya keberadaan dari pasangan antipartikel untuk setiap partikel misalnya positron sebagai antipartikel dari elektron. Dia adalah orang pertama yang mengembangkan teori medan kuantum yang menjadi landasan bagi pengembangan seluruh teori tentang partikel subatom atau partikel elementer.
Persamaan Dirac
Dia memiliki argumen yang sederhana dan elegan yang didasarkan pada tujuan bahwa teori tranformasinya dapat berlaku juga dalam mekanika kuantum relativistik – sebuah argumen yang menspesifikasikan bentuk umum dari yang harus dimiliki oleh persamaan relativistik ini,
9.     RICHARD PHILIPS FEYNMAN 1918 - 1988
ADA dua jenis orang jenius. Para jenius biasa yang melakukan sesuatu yang hebat, namun mereka pergi dengan meyakinkan kita pun bisa melakukan hal serupa asal kerja keras. Lalu ada penyihir, dan kita sulit mengerti bagaimana mereka melakukan hal-hal hebat tersebut. Dan Feynman adalah penyihir.
Itulah ungkapan yang dilontarkan Marc Kac, seorang matematikawan, terhadap koleganya Feynman. Pria berdarah Yahudi ini dilahirkan pada 11 Mei 1918 di Far Rockaway, New York, Amerika Serikat. Ayahnya seorang penjual pakaian seragam militer. Ia mendidik Feynman dengan beraneka ragam ilmu pengetahuan alam. Hal ini ternyata memancing sifat ingin tahu yang besar dari Feynman muda yang kemudian berperan besar dalam kariernya kelak.
Saat berusia 12 tahun, Feynman muda memiliki laboratorium yang dibuatnya sendiri. Dia membuat percobaan listrik, membuat radio sederhana, sampai menjadi teknisi radio panggilan amatir dalam laboratoriumnya. Tak hanya itu, dia juga bermain-main dengan percobaan kimia sederhana. Bahan-bahannya diambil dari dedaunan dan bumbu masak ibunya.
Selesai menyelesaikan kuliah sarjananya di jurusan Fisika, Massachusetts Institute of Technology (MIT) pada tahun 1939, Feynman meneruskan pendidikannya ke Princeteon University. Di sanalah dia bertemu dan digembleng astro-fisikawan terkenal, John Wheeler.
Ketika Feynman menjadi pembicara saat seminar berkala (student seminar), tidak tanggung-tanggung John Wheeler mengundang beberapa fisikawan tersohor saat itu termasuk Albert Einstein. Kenyataannya Einstein pun datang dan ikut bertanya. Feynman menyelesaikan jenjang S-3 dan meraih gelar Ph.D. pada tahun 1942.
a.      Penguraian inti atom
Selepas dari Princeton, Feynman bergabung dengan Project Manhattan, projek pengembangan bom atom pertama. Dia ditempatkan di Los Alamos untuk mengerjakan teori-teori penguraian inti atom sebagai sumber energi bom atom. Di sana dia bertemu Hans Bethe (peraih Nobel 1967) dan Robert Oppenheimer (Kepala projek di Los Alamos).
Selama di Los Alamos, karakter keingintahuannya yang besar menyihir semua orang. Tidak hanya kesuksesannya menyelesaikan banyak permasalahan dan membantu Amerika Serikat membuat bom atom pertama, tapi juga keusilannya dalam memakai konsep-konsep fisika dalam kehidupan sehari-hari.
Feynman terkenal sebagai "tukang" buka kunci, laci, dan brangkas handal. Jendral Leslie Groves, seorang militer yang memimpin projek di Los Alamos terpaksa memerintahkan untuk mengganti semua brankas di kantor, karena ulah Feynman yang sukses menjebol semua kunci tanpa merusaknya.
Andil Feynman sangat besar dalam kesuksesan projek Manhattan. Setelah projek ini selesai, Feynman menjadi rebutan banyak universitas untuk menjadi guru besar. Feynman memutuskan untuk bergabung dengan Cornell University (1945 - 1950), kemudian pindah ke California Institute of Technology (Caltech), dan tahun 1959 diangkat menjadi Tolman professor of physics di universitas tersebut.
Kemampuannya menjelaskan fisika yang rumit menjadi sangat sederhana dan indah, membuatnya terkenal dan tersohor di kalangan ilmuwan. Pada tahun 1961, Feynman sempat menyediakan dirinya mengajar ilmu fisika dasar untuk para mahasiswa baru tahun pertama. Kuliahnya dihadiri tidak hanya dari mahasiswa sendiri, tapi juga oleh mahasiswa senior, para peneliti, bahkan profesor.
Sumbangan terbesar Feynman di dunia Fisika adalah di bidang Elektrodinamik Kuantum. Sebuah teori kuantum yang menjelaskan interaksi cahaya dan materi (light-matter interaction). Teori ini adalah teori kuantum tersukses sejauh ini, yang kecocokannya dengan hasil eksperiman ibarat mengukur jarak Surabaya - Bandung dengan ketelitian helaian rambut.
Teori Elektrodinamik Kuantum dirintis pakar kuantum Paul Dirac, Werner Heisenberg, Wolf Pauli, dan Enrico Fermi pada tahun 1920-an. Feynman berhasil menyelesaikan teori ini.
Selain itu, kontribusi Feynman adalah "Diagram Feynman", yang menyingkatkan kalkulasi berlembar-lembar menjadi sepotong diagram sederhana yang mudah diinterpretasikan secara fisik. Diagram Feynman ini akhirnya dipakai secara luas dalam mempelajari interaksi antarpartikel.
Diagram Feynman menjelaskan, bagaimana dua elektron saling tolak-menolak ketika berdekatan dengan mempertukarkan foton. Untuk idenya yang sangat brilian ini, Feynman mendapatkan hadiah Nobel Fisika tahun 1965, bersama Julian Schwinger (Amerika Serikat) dan Shinichiro Tomonaga (Jepang). Mereka bertiga berkontribusi sama dalam Elektrodinamik Kuantum, tapi berbeda metoda matematikanya.
Tidak hanya itu, Feynman juga bekontribusi pada beberapa area fisika lainnya. Sebut saja Teori Helium Cair (bersama fisikawan Rusia, L.D. Landau), Teori Peluruhan Beta, Teori Parton yang mengantarkan kita pada pemahaman Quark, dan juga terlibat pada perintisan teknologi nano dan komputer kuantum.
b.      Fisika sebagai permainan
Tidak seperti fisikawan lainnya yang begitu serius membidani fisika dan ilmu sains lainnya, Feynman justu menjadikan fisika sebagai sebuah permainan yang mengasyikkan. Keingintahuan yang tinggi dan kecintaannya bermain-main dengan fisika telah melibatkannya dalam berbagai petualangan.
Petualangan yang sangat inspriratif, seru, sekaligus usil terangkum dalam dua buku biografinya Surely you are joking, Mr. Feynman (1985) dan What do you care what people think (1989).
Feynman sempat berprofesi sebagai penabuh gendang festival ketika menjadi profesor tamu di University of Rio, Brazil. Dia juga berlatih menggambar dan beberapa karyanya pernah dipublikasikan atas nama "Ofey". Petualangannya paling terkenal adalah ketika berhasil memecahkan misteri meledaknya pesawat ulang-alik Challenger pada tahun 1986.
Feynman mungkin bukan yang paling pintar di zamannya, tapi dia sudah berhasil membuat fisika menjadi ilmu yang menyenangkan. Cara dia memecahkan masalah dan menjelaskannya dalam tulisan dan ceramahnya menjadi inspirasi ribuan fisikawan muda modern. Feynman meninggal pada 15 Februari 1988, karena menderita kanker usus.
KESIMPULAN
ADA dua jenis orang jenius. Para jenius biasa yang melakukan sesuatu yang hebat, namun mereka pergi dengan meyakinkan kita pun bisa melakukan hal serupa asal kerja keras. Lalu ada penyihir, dan kita sulit mengerti bagaimana mereka melakukan hal-hal hebat tersebut. Dan Feynman adalah penyihir.
Itulah ungkapan yang dilontarkan Marc Kac, seorang matematikawan, terhadap koleganya Feynman. Pria berdarah Yahudi ini dilahirkan pada 11 Mei 1918 di Far Rockaway, New York, Amerika Serikat. Ayahnya seorang penjual pakaian seragam militer. Ia mendidik Feynman dengan beraneka ragam ilmu pengetahuan alam.
Saat berusia 12 tahun, Feynman muda memiliki laboratorium yang dibuatnya sendiri. Dia membuat percobaan listrik, membuat radio sederhana, sampai menjadi teknisi radio panggilan amatir dalam laboratoriumnya. Teori Elektrodinamik Kuantum dirintis pakar kuantum Paul Dirac, Werner Heisenberg, Wolf Pauli, dan Enrico Fermi pada tahun 1920-an. Feynman berhasil menyelesaikan teori ini. Feynman meninggal pada 15 Februari 1988, karena menderita kanker usus.

10.           RAYMOND DAVIS JR., SIPENYABAR YANG MERAIH NOBEL 2002

Raymond Davis, Jr., pemenang Nobel Fisika tahun 2002, merupakan ilmuwan pertama yang secara serius memelopori penelitian tentang neutrino di matahari. Neutrino adalah partikel, yang dipostulasikan oleh Wolfgang Pauli pada tahun 1930, yang selama puluhan tahun dianggap tidak memiliki massa (ghostlike particles). Partikel-partikel neutrino yang sangat sulit untuk dideteksi ini diperkirakan terbentuk dari reaksi-reaksi nuklir (reaksi fusi) yang terjadi di bintang-bintang atau matahari (solar neutrino).
Hujan neutrino di permukaan bumi diperkirakan mencapai kecepatan milyaran partikel per detik. Penelitian yang dilakukan Ray Davis ini berhasil menyumbangkan metode pendeteksian untuk membuktikan keberadaan partikel neutrino dan melahirkan suatu bidang penelitian baru yang sangat penting bagi dunia astrofisika, yaitu astronomi neutrino.
Davis dilahirkan di Washington, D.C., pada tanggal 14 Oktober 1914 (sekarang hampir berumur 90 tahun tetapi masih tetap semangat lho..). Pada tahun 1937 ia mendapatkan gelar BS dari University of Maryland yang kemudian dilengkapi dengan gelar MS di tempat yang sama pada tahun 1940. Ia melanjutkan pendidikannya di Yale University dan mendapatkan Ph.D. di bidang kimia fisika pada tahun 1942.
Davis kemudian bergabung dengan U.S. Army Air Force selama empat tahun (1942-1946) sebelum bekerja sebagai ahli kimia di Monsanto Chemical Company (1946-1948). Selepasnya dari Monsanto Chemical Company, Davis bergabung (1948-1984) dengan departemen kimia Brookhaven National Laboratory dan menjadi ahli kimia senior di sana sejak tahun 1964. Sejak tahun 1985 ia bergabung dengan University of Pennsylvania sebagai profesor penelitian astronomi sambil tetap membantu berbagai penelitian di Brookhaven National Laboratory.
Walaupun Davis selalu dikenal sebagai seorang ahli kimia (chemist) selama 52 tahun karirnya, sebagian besar hasil penelitiannya justru dipublikasikan di berbagai jurnal fisika terkemuka seperti Physical Review, Physical Review Letters, dan Nuclear Physics. Davis memulai penelitian pentingnya tentang neutrino (astrofisika) pada tahun 1950 di saat para ilmuwan lain lebih memilih bidang lain karena belum populernya solar neutrino yang relatif merupakan bidang baru kala itu. John Bahcall (Princeton University) yang banyak bekerja sama dengan Davis pernah mengemukakan bahwa saat itu semua ilmuwan teori maupun eksperimen yang secara serius menekuni penelitian neutrino dapat (dan sangat sering) berkumpul bersama di dalam mobil Davis tanpa perlu berdesakan. Ini menunjukkan betapa sedikitnya ilmuwan yang mau meneliti topik yang masih tidak populer itu. Ternyata Davis, melalui cinta dan dedikasinya pada ilmu pengetahuan dengan ditunjang karakter dan pribadinya yang mengagumkan, berhasil menebarkan semangat baru yang membuat para peneliti mulai tertarik dan berani untuk menekuni solar neutrino.
Keahliannya dalam usaha meyakinkan berbagai pihak untuk mempelajari dan meneliti neutrino secara serius pernah digunakannya saat ia mempresentasikan ide penelitiannya kepada Maurice Goldhaber, direktur Brookhaven National Laboratory kala itu. Goldhaber, seorang ahli fisika nuklir terkenal saat itu, tidak pernah tertarik sedikit pun pada astrofisika. Davis mempresentasikan ide penelitian neutrinonya dari segi fisika nuklir tanpa sedikit pun menyebutkan aspek astrofisikanya (fisikawan Bahcall pernah bilang ternyata si Davis ini pintar berpolitik juga, kalau saja saat itu Davis sebut-sebut astrofisika pasti Goldhaber akan menolaknya idenya mentah-mentah).
Strateginya ini ternyata berhasil meyakinkan Goldhaber, yang sangat menyukai ide-ide baru di bidang fisika, untuk mendukung dan membiayai penelitian fisika nuklir yang diajukan Davis itu, termasuk juga eksperimen tentang solar neutrino yang menghadiahinya Nobel Fisika tahun 2002 (yang diterimanya bersama Masatoshi Koshiba dan Riccardo Giacconi).
Kiprahnya sebagai peneliti telah mencatat Davis sebagai anggota National Academy of Sciences dan National Aeronautics & Space Administration's Lunar Sample Review Board (yaitu dewan yang meneliti contoh debu dan batu yang diambil dari permukaan bulan saat NASA pertama kali berhasil mengirimkan astronotnya ke bulan menggunakan Apollo 11; Davis ikut membantu penelitian bersejarah tersebut). Davis juga mengoleksi berbagai penghargaan ilmiah termasuk Boris Pregel Prize (New York Academy of Sciences), Comstock Prize (National Academy of Sciences), American Chemical Society Award for Nuclear Chemistry, American Physical Society's Tom W. Bonner Prize, W.K.H. Panofsky Prize, Hale Prize (American Astronomical Society), Bruno Pontecorvo Prize (Russian Academy of Sciences), dan Wolf Prize (Wolf Foundation) yang juga diterimanya bersama Masatoshi Koshiba. Pada tahun 2001 Presiden George W. Bush menganugerahinya sebuah National Medal of Science.
Sebagai seorang peneliti,
Davis dikenal sangat sabar, ramah, dan murah hati. Ia selalu menghormati lawan bicaranya tanpa pernah membedakan antara seorang profesor senior dengan mahasiswa baru, seorang sahabat dekat, maupun peneliti yang tidak ramah sekalipun. John Bahcall yang sudah pernah tampil bersama Davis dalam berbagai acara formal lebih dari 100 kali mengungkapkan bahwa ia tidak pernah sekali pun melihat Davis kehilangan kesabaran maupun menjadi marah dalam setiap diskusi. Davis dikagumi sebagai seorang manusia berbudi dan seorang peneliti berbakat. Ia kini tinggal di Blue Point, New York, bersama istrinya, Anna Tomre, yang dinikainya pada tahun 1948. Pasangan ini memiliki lima orang anak dan sembilan orang cucu. Apakah Neutrino itu ?
Sesuai dengan namanya, neutrino merupakan suatu partikel yang tidak bermuatan listrik alias netral. Partikel ini diusulkan oleh Pauli pada tahun 1930. Ketika itu Pauli dan para fisikawan sedang pusing tujuh keliling karena tidak dapat menjelaskan energi yang hilang dalam peristiwa peluruhan beta (beta decay) yang mengubah netron menjadi proton dan elektron. Mereka bingung kenapa ada energi yang hilang? Apakah energi itu tidak kekal? Apakah itu berarti energi bisa dimusnahkan? Pauli kemudian mengambil inisiatif dan mengusulkan bahwa energi yang hilang ini sebenarnya dipakai oleh suatu partikel yang tidak bermassa, tidak terlihat dan bergerak dengan kecepatan cahaya.
Empat tahun kemudian, Enrico Fermi menamakan partikel ini, neutrino (artinya little neutral one). Tahun 1956 Reines dan Cowan menemukan neutrino dalam eksperimen di dalam reaktor nuklir (Reines meraih hadiah nobel fisika tahun 1995).
Neutrino banyak dihasilkan dalam reaksi-reaksi fusi baik di Matahari maupun bintang-bintang lain. Matahari menghasilkan sekitar dua ratus triliun triliun triliun netrino setiap detik (nah hitung sendiri deh nolnya). Sedangkan pada supernova (bintang yang meledak di akhir hidupnya) dapat menghasilkan neutrino 1000 kali lebih banyak dari neutrino di Matahari.
Neutrino tidak berinteraksi dengan materi sehingga mereka bisa tembus berbagai benda termasuk tubuh kita. Sekitar 65 miliar neutrino dari matahari tiap cm kuadratnya tiap detik datang ke bumi
Bagaimana sih mendeteksi neutrino ini? Davis, menggunakan sebuah tangki berisi 100 ton tetrakloroetilena, semacam cairan pembersih. Neutrino mampu mengubah klor di dalam cairan ini menjadi radioaktif argon. Nah Argon ini kemudian akan meluruh lagi menjadi klor dengan memancarkan elektron. Elektron inilah yang diamati oleh detektor (alat pendeteksi).
Detektor yang digunakan oleh Davis di Homestake mines, South Dakota, mencatat bahwa energi neutrino yang datang sekitar 0.81 megaelektronvolt
Kenapa orang mempelajari neutrino yang berasal dari Matahari (solar neutrino) ini? Dengan mempelajari neutrino orang akan tahu berapa laju reaksi fusi yang terjadi dibintang-bintang. Hasil ini akan membantu menjelaskan bagaimana terjadinya evolusi bintang, berapa umur bintang dan bagaimana matahari itu bersinar? Disamping itu dengan meneliti neutrino ini maka kita bisa tahu apakah neutrino itu sungguh-sungguh tidak punya massa atau ada jenis neutrino yang mempunyai massa. Ini penting untuk menguji kebenaran dari teori fisika standard model yang memprediksi bahwa neutrino itu tidak bermassa.
KESIMPULAN :
Raymond Davis, Jr., pemenang Nobel Fisika tahun 2002, merupakan ilmuwan pertama yang secara serius memelopori penelitian tentang neutrino di matahari. Neutrino adalah partikel, yang dipostulasikan oleh Wolfgang Pauli pada tahun 1930, yang selama puluhan tahun dianggap tidak memiliki massa (ghostlike particles). Walaupun Davis selalu dikenal sebagai seorang ahli kimia (chemist) selama 52 tahun karirnya, sebagian besar hasil penelitiannya justru dipublikasikan di berbagai jurnal fisika terkemuka seperti Physical Review, Physical Review Letters, dan Nuclear Physics. Davis memulai penelitian pentingnya tentang neutrino (astrofisika) pada tahun 1950 di saat para ilmuwan lain lebih memilih bidang lain karena belum populernya solar neutrino yang relatif merupakan bidang baru kala itu
Davis dilahirkan di Washington, D.C., pada tanggal 14 Oktober 1914 (sekarang hampir berumur 90 tahun tetapi masih tetap semangat lho..). Pada tahun 1937 ia mendapatkan gelar BS dari University of Maryland yang kemudian dilengkapi dengan gelar MS di tempat yang sama pada tahun 1940. Ia melanjutkan pendidikannya di Yale University dan mendapatkan Ph.D. di bidang kimia fisika pada tahun 1942.
DAFTAR PUSTAKA